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Introduction

In this chapter we introduce the stereo matching, a common research topic
within the computer vision. In addition, we describe the stereo vision system,
introduce relevant terminology, and define our research questions. Lastly, we
present the outline of the thesis.



2 CHAPTER 1. INTRODUCTION

1.1 Stereo Vision

The human vision system process visual information effortlessly and can de-
termine how far away objects are, how they are oriented with respect to the
viewer, and how they relate to other objects. Computer vision is a field that
includes methods for acquiring, processing, analysing, and understanding im-
ages, scene reconstruction, event detection, video tracking, object recognition,
learning, indexing, motion estimation, and image restoration [1].

Computer vision seeks to model the complex visual world by various math-
ematical methods including physics-based and probabilistic models. The task
of computer vision is difficult one because it tries to solve an inverse problem
and seeks to recover some unknowns given insufficient information to fully
specify the solution.

One of the aims of computer vision is to describe the world that we see
in one or more images and to reconstruct its properties, such as shape, il-
lumination, and color distributions. Stereo vision is a field within computer
vision, that deals with an important problem: reconstruction of the three-
dimensional coordinates of points in scene given two camera-produced images
of known camera geometry and orientation [2].

1.2 Stereo Matching

Binocular stereo is a problem of determining the three-dimensional shape of
visible surfaces in a static scene from two images of the same scene taken
by two cameras or one camera at two different positions. The central task
of binocular stereo is to solve a correspondence problem, i.e. to find pairs
of corresponding points in the images. Corresponding points are projections
onto images of the same scene point. Stereo matching is a method which aims
to solve the correspondence problem [3], [4].

When the camera parameters and geometry are known, the problem can
be transformed to a one-dimensional problem. Stereo matching then finds
corresponding points along the epipolar lines in both images and their relative
displacements. The map of all relative displacements is called a disparity map
and with known geometry this can easily be transformed into a depth map.

Undistorted and rectified stereo images serve as the starting point in stereo
matching. The geometry of the cameras is thus known, and the images are
transformed to correspond to a non-verged stereo system, i.e. a stereo system
with cameras with parallel optical axes as shown in Figure 1.1. Cameras
are modeled by the projective pinhole camera model with an image plain at
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Figure 1.1 Ideal stereo geometry

distance f with respect to a projection center [5]. A crossection of a non-
verged stereo camera system is illustrated in Figure 1.1: two cameras with

parallel optical axes Olcf}gef " and 0,¢59" at a baseline distance B and with
equal focal lengths f; = f.. Also the principal points ci;ef  and cgight have the
same pixel coordinates in their respective left and right images.

In such setup the epipolar lines are known, horizontal and aligned. We then
assume we can find a point P in the physical world in the left and right images,
denoted as p; and p, in Figure 1.1. Points p; and p, are called corresponding
points. In this simplified case, taking ! and 2" to be the horizontal positions
of the points in the left and the right image, p; and p, respectively, we can
calculate the depth Z of point P if the disparity between image points p; and

p, is known. Thus, if the disparity as defined by

d=al—za", (1.1)

is known, the depth of point P is calculated as
[-B

Z:l—.
xt — "

(1.2)

The first step is to match the points in the two images along the known
epipolar lines and to determine their disparities given by equation (1.1), so
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that the three-dimensional position of each point can be determined by trian-
gulation given by equation (1.2).

Although the mathematical model and the explanation of stereo vision
are simple, stereo matching is often ambiguous for photometric issues, surface
structure or geometric ambiguities. The pivoting point of nearly all stereo
correspondence algorithms is photometric constancy, i.e. it is assumed that
different images of the same scene have the same appearance. But this is
not always true. For highly reflective or specular surfaces, the appearances in
different images differ significantly. Also, finding corresponding points within
uniformly colored regions or surfaces with repetitive texture or structure is
problematic. Next, depending on the scene geometry, it can happen that
some points in one image do not have corresponding points in the other image
due to occlusion or due to the limited field of view.

The starting point in stereo correspondence involves many assumptions
and constraints. Although stereo has been a scientific topic of interest since
more than half a century, not all questions have been answered and not all
problems solved.

1.3 Terminology

The aim of stereo matching is to find, in a reference stereo image, the corre-
sponding point for each pixel in a non-reference stereo image. We introduce
the terminology of the stereo correspondence problem on the rectified stereo
pair Tsukuba from the Middlebury benchmark [6].

The first row in Figure 1.2 shows the rectified stereo pair Tsukuba. The
left image of the stereo pair is considered as the reference while the second
row shows the color coded ground truth disparity map. Disparity ranges
from 0 to 15. The actual minimum disparity of the scene is 5; this is coded
by light blue. The background of the scene is furthest from the cameras;
it has the minimum disparity. The lamp is the object in the scene closest
to the cameras and has the largest disparity 14. The third row in Figure 1.2
shows the nonoccludded, occluded and discontinuity regions in gray, black, and
white respectively, for the reference image of the stereo pair. Black, except
for the image boundary, represents pixels in the left image that do not have
corresponding pixels in the right image because they are not visible in the
right image, i.e. they are occluded in that image. White represents regions
with disparity or equivalently depth discontinuity. In a discontinuity region,
the disparity changes abruptly and significantly, i.e. more than one pixel along
the epipolar line. Discontinuity regions are rather challenging for an accurate
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correspondence calculation.

To solve the stereo correspondence, a template matching method can be
used [1]. The template in stereo matching can be a squared window or a
segment. The region around a pixel in the reference image is compared to
the potential matching regions in the other, non-reference stereo image. To
determine which pixel from the candidate pixels from the disparity range is
the corresponding one, it is necessary to have a suitable score for template
comparison. This score can be expressed as similarity measure, likelihood and
cost.

No matter how good a similarity measure, a likelihood or a cost is, there
are still other problems inherent to stereo correspondence. First of all, occlu-
sion can lead to erroneous conclusion that are based on the use of the score
alone. Closely related to occlusion are discontinuity regions; these can lead
to wrong disparity estimates if not taken into account in template selection.
Also, different textures have opposing requirements with respect to the most
suitable template shape. For low texture regions, it is desirable to have a large
window as a template, whereas for successful matching for high texture regions
it is sufficient to use a very small window or segment with only a small number
of pixels. Window/segment based matching methods inherently assume that
all pixels within the matching window or segment have the same disparity.
This is known as the fronto-parallel assumption. However, the fronto-parallel
assumption is not always an approximation and can result in an erroneous
disparity estimation.

We illustrate the above cases with the example in Figures 1.3 and 1.4. We
consider different correspondence scores for four characteristic matching cases.
We calculate matching scores: for a pixel in low textured regions without
disparity discontinuity, marked by the blue rectangle in Figure 1.3; a pixel
in a region with repetitive texture without disparity discontinuity, the red
rectangle; a pixel within a region with a discontinuity, the green rectangle;
and a pixel in a textured region without discontinuity, the pink rectangle.
These matching windows with corresponding matching regions and epipolar
lines are shown in different colors in image 1.3. We have used a similarity
measure, a likelihood and a cost for stereo correspondence.

An example of a similarity measure is normalized cross-correlation (NCC).
Given a rectangular window of size (2n + 1) x (2n + 1) around the current
point (u,v) in left image [;, the similarity with a rectangular window of the
same size around the point with disparity d, with coordinates (u,v — d), in
right image I, is calculated by
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Figure 1.2 Stereo pair, ground truth disparity map, occlusion map
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Yo > Wlutivot4) =) - (Te(u+i,0 —d+ §) — po)
1 i=—n j=-n

SNCC(U,U,d) = (2n+1)? : 0102 7(13)

where p; and pg are mean values of left and right windows are

= 2n+1 Z ZIlu+zv+j) (1.4)

i=—nj=-n
and
po = 2n+ Z Z (u+i,0v—d+j), (1.5)
i=—nj=-n
and where o1 and o9 are standard deviations of left and right matching win-
dows are

— 2
o1 = 2n+1 Z Z (L(u+d,v+7) — 1) (1.6)

i=—nj=—n

and

_ 2
o9 = 2n—|—1 Z Z r(u+i,v—d+j) — p2)’. (1.7)

i=—nj=—n

The similarity measure results in a real number, which is the measure of the
similarity of the matching windows, and it should have a maximum for the
corresponding disparity. Specifically, the NCC always results in a number
between —1 and 1, Sycc(u,v,d) € [—1,1].

The likelihood L(u,v,d) is a real non-negative number that is directly
proportional to the similarity of the matching windows. One way to calculate
a likelihood is to suitably transform the NCC result, for example as

1

1-— SNcc(u,v,d)'

This formula transformes the NCC similarity to likelihood because it provides
a measure which is non-negative L(u,v,d) € [0,00) and it increases with the
window similarity. The similarity of matching windows can be expressed also
as a cost. Cost is a kind of similarity measure that is expressed as a real num-
ber; it is inversely proportional to the similarity between matching windows.
An example of a cost is sum of squared differences of all pixel intensities in
matching windows; this can be presented as

L(u,v,d)

(1.8)

C(u,v,d) Z Z (L(u+i,0+j) — Lu+iv+j—d)>. (1.9)

i=—nj=—n
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We show an example of the behaviour of the similarity measure, likelihood,
and cost for different characteristic cases in stereo matching in Figure 1.4.
Matching is applied to the rectified stereo pair, meaning that the epipolar
lines are horizontal and that windows are matched within the disparity range.
For the stereo pair in the figure, the disparity range is d € [0, 15], so there are
16 disparity candidates. We observe characteristic cases: low-textured region
matching, periodic structure matching, high-textured region matching, and
matching of the occluded pixel as a central window pixel. We furthermore
illustrate for those cases the similarity (2.13), likelihood (1.8), and cost (1.9).

Characteristic matching windows also have a specific behaviour, that is
mirrored in the matching scores. In the case of the repetitive structure match-
ing similarity and cost have also repetitive behaviour, while likelihood seems
to be more suitable for this case with only one pronounced maximum, as
illustrated in the red graphs in Figiure 1.4.

All three matching scores estimate an accurate disparity for the case of
high textured region without discontinuity, as illustrated in the pink graphs
in Figure 1.4.

Matching of the low textured window does not result in pronounced ex-
treme values of any matching score, as illustrated in the blue graphs in Figure
1.4.

Matching of the window with depth discontinuity produces unreliable es-
timates for all scores, as shown by the green graphs in Figure 1.4 .

1.4 Problem Definition and Research Questions

In this thesis we investigate the problem of dense stereo matching. Correspon-
dence is key problem in dense stereo matching. In dense disparity computa-
tion, correspondence needs to be solved for each point in the stereo images.
The goal of a stereo matching method is to estimate a reliable disparity map.

To compute reliable dense disparity maps, a stereo algorithm must success-
fully deal with adverse requirements. Due to unknown differences in gains and
offsets of cameras, the corresponding pixels may not have the same intensity.
Also, noise can cause differences in appearance. Discontinuities in depth in a
scene, such as one object in front of another with respect to camera position,
can cause matching result errors if the compared region contains pixels that
originate from different objects. The effect of occlusion is that not all scene
points are present in both images and that the pixels do not have correspond-
ing pixels in the other image. That results in an incorrect correspondence.
If the object surface has a uniform or periodic texture, it will result in the
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Figure 1.3 Left images: the reference stereo image and ground truth dis-
parity map with matching windows, Right image: matching regions

similarity in a function of disparity that is either flat or has multiple periodic
minima.

We begin our research by posing questions. First, we start by comparing
rectangular windows and several probabilistic algorithms to investigate the
influence of different algorithms on the disparity estimation. We observe the
disparity estimation along the epipolar line within the probabilistic framework.
As most methods for disparity estimation are rather ad hoc, our first research
question is: How can we design a method for disparity estimation
that is optimal in a probabilistic sense?

This first question can be broken down into a number of subquestions:

e How can we define a disparity estimation as a one-dimensional state
estimation problem?

e Which probabilistic algorithms can be used to estimate disparity map
from stereo images using a one-dimensional hidden Markov model?
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Figure 1.4 Similarity, likelihood and cost for different characteristic cases
in matching

e How can particle filter be applied to estimate disparity?

e How do the different state estimation algorithms compare for different
state space parameters?

Next, further improvement can be reached by using a more suitable like-
lihood measure. This leads to our second research question: How can we
define a likelihood measure that is optimal in a probabilistic sense?

The related subquestion is:

e How can we obtain a likelihood measure that is invariant to unknown
texture, gains and offsets?
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Finally, we diverge from using the whole squared windows for similar-
ity /cost calculation and examine the mechanism of proper pixel selection for
matching within the local stereo matching framework. That leads to our third
research question: How can we define an optimal region for matching?
Related subquestions are:

e How can we suitably select a sparse subset of pixels for matching from the
initial matching windows in order to diminish the influence of occlusion
and depth discontinuity to the matching, and how do we calculate a
matching cost?

e How can we establish a relationship between the fronto-parallel assump-
tion and the local intensity variation for application in stereo matching?
How do we select a segment for matching so that the fronto-parallel
assumption holds for the segment?

e What kind of intensity transformation on the image pixels makes the
image more favourable for local adaptive segmentation?

e Which postprocessing steps deal successfully with inconsistently esti-
mated disparities?

1.5 Thesis Outline

Our research involves the pursuit of an ideal similarity measure, or cost, which
will as much as possible diminish the influence of unknown gains, offsets and
texture, as well as the ambiguities in stereo correspondence caused by differ-
ences in appearance, occlusion, and depth discontinuity.

We start by addressing the correspondence problem, by defining a sound
one-dimensional probabilistic framework. Next, we concentrate on the deriva-
tion of a suitable likelihood function for the probabilistic matching method.
Lastly, we investigate the most suitable segment selection for stereo matching
within the local framework.

Following this introduction, we present in Chapter 2 a literature overview
of stereo matching approaches and algorithms, and we explain a de facto es-
tablished method of algorithm evaluation. In Chapter 3, we investigate stereo
matching as a space-state problem using a one-dimensional hidden Markov
model and a particle filter. In Chapter 4, we compare different probabilistic
algorithms for disparity estimation.

Chapter 5 introduces a new likelihood function for window-based stereo
matching that is invariant to unknown offsets, gains and texture.
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In Chapter 6 we observe stereo matching within a local stereo matching
framework that uses a sparse subset of pixels for matching from the initial
matching windows. In Chapter 7, we perform parameter optimization of the
sparse stereo matching algorithm for different stereo pairs with different scene
characteristics.

In Chapter 8, we redefine some of the common assumptions used in stereo
matching and establish a relationship between the local intensity variation in
the image and the fronto-parallel assumption. This new interpretation of the
relationship leads us to the adaptive local segmentation and a very accurate
local stereo matching algorithm.

In Chapter 9 we draw conclusions, answer the research questions and rec-
ommend further research prospects.



Stereo Correspondence

In this chapter we introduce the scope and the context of the stereo corre-
spondence problem and present an overview of stereo matching approaches in
literature. Stereo matching is the process of finding corresponding points in
stereo images. For the rectified stereo image pair, the result of this matching
is a relative displacement of the corresponding points along the epipolar lines.
The map of displacements for all points in the image is a disparity map. The
disparity map is estimated using a local, global or semiglobal algorithm, rely-
ing on the similarity measure calculated from the image data and on some of
the common matching assumptions. The last step in disparity map estimation
is a disparity refinement, which detects erroneously estimated disparities and
corrects their values.

13
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2.1 Disparity Map Estimation

Stereo images are two images of the same scene taken from different view-
points. Dense stereo matching is a correspondence problem that is aimed at
finding for each pixel in one image the corresponding pixel in the other image.
In dense stereo matching, the disparity for each pixel in the reference image
[4] is estimated. We consider stereo matching for known camera geometry
that operates on two images and produces a dense disparity map d(z,y). For
the rectified stereo image pair, the result of the matching is a real number
that represents the relative displacement of the corresponding points along
the epipolar lines. A map of all pixel displacements in an image is a disparity
map.

To solve and regularize the stereo correspondence problem, it is common to
introduce constraints and assumptions. The correspondence between a pixel
(x,y) in the reference image and a pixel (2/,4') in the matching image is then
given by the equation:

=x+s-dzy), ¥y =y, (2.1)

where sign s, s = £1, is a sign chosen on the basis of the reference image.

Generally, not each pixel has a corresponding pixel due to occlusion. The
stereo matching is generally ambiguous as it involves an ill-posed problem due
to occlusions and due to specularities caused by non-Lambertian surfaces, or
lack of texture, [2]. It is necessary to apply certain assumptions to the match-
ing process in order to obtain a solution. Many assumptions and constraints
are introduced to regularize the stereo correspondence [3].

The epipolar constraint is a geometric constraint imposed by the imag-
ing system, which causes the stereo matching to be transformed into a one-
dimensional problem. Corresponding points must lie on the corresponding
epipolar lines.

The disparity limit constraint regards the maximum disparity range. It can
be estimated on the base of the maximum and minimum depth and geometry
of a stereo system.

The constant brightness assumption (CBA) or Lambertian assumption states
that corresponding pixels have identical or very similar appearances in the
stereo images.

The smoothness constraint states that the disparity varies smoothly except
at depth discontinuities.

The fronto-parallel constraint is an approximation of the smoothness con-
straint. It assumes that all pixels within the matching region have the same
disparity.
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The uniqueness constraint is one of the fundamental assumptions. It states
that a point in one image should have no more than one corresponding point
in the other image, [7]. However, the uniqueness constraint is not fulfilled for
highly horizontally slanted surfaces because horizontal slant leads to unequal
projections in the two cameras. That requires modification of stereo algo-
rithms for allowing M-to-N pixel or one-to many correspondences, [8, 9]. A
simple test for cross-checking is given by

|di(@,y) + dr(2', )| < 1 (2.2)

where (z,y) and (2/,y) are the correspondence pairs in left and right images
with disparities dj(z,y) and d,(2', y). The uniqueness constraint can be allevi-
ated for the highly slanted surfaces and be extended to allow for one-to-many
mapping scenario as

|di(x,y) +dp (2", y)| <t (2.3)

where t > 1, [9].

The continuity constraint (CONT) states that the disparity varies smoothly
everywhere, except on the small fraction of the area on the boundaries of ob-
jects where discontinuity occurs, [7].

The occlusion constraint (OCC) states that a disparity discontinuity in
one image corresponds to an occlusion in the other image and vice versa.
Discontinuities in depth map usually occur on the intensity edges.

The wisibility constraint (VIS) is fulfilled for the points visible in both
images, i.e. points that are not occluded. The visibility constraint requires
that an occluded pixel has no match in the other image and that a non-
occluded pixel has at least one match [10]. The visibility constraint is self-
evident because it is derived directly from the definition of occlusion. A pixel
in the left image will be visible in both images if there is at least one pixel
in the right image that matches it. Unlike the uniqueness constraint, the
visibility constraint permits many-to-one matching.

The ordering constraint (ORD) states that the projections of the scene
points appear in the same order along the epipolar lines in images [2], i.e. the
order of the features along epipolar lines is the same. However, the ordering
constraint does not hold if a narrow occluding object is closest to the cameras.
This is known as the double nail illusion [11], [10].

The limit of the disparity gradient states that the maximum directional
derivative of disparity is limited [12].

Constraints are applied locally or globally in the correspondence calcula-
tion. We therefore distinguish local and global correspondence algorithms.
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2.2 Correspondence Algorithms

2.2.1 Local algorithms

Local algorithms apply constraints to a small number of pixels surrounding a
pixel of interest. The starting points are the Lambertian assumption and the
disparity limit constraint. The final disparity for the reference pixels is esti-
mated based on the similarity measure or matching cost between local regions
around the pixel of interest in the reference image and around a matching
pixel in the non-reference image. The final estimated disparity is the disparity
with the highest similarity measure or with the lowest matching cost. This
method is known as winner-take-all (WTA) method.

2.2.2 Global Algorithms

Global correspondence methods exploit nonlocal constraints in order to reduce
sensitivity to local regions in the image that fail to match due to occlusion or
uniform texture. In global methods, disparity computation is formulated as a
global energy minimization process. Two-dimensional energy minimization is
generally an NP-hard problem. The optimization techniques also incorporate
some regularization steps in order to make the calculation time linear or poly-
nomial. Global methods consist of matching cost computation and disparity
optimization.

Energy Minimization

Stereo matching can be interpreted as assigning a label to each pixel in the
reference image, where labels represent disparities. Such pixel-labeling prob-
lems are represented in terms of energy minimization, where the energy func-
tion has two terms: one term penalizes solutions that are inconsistent with
the observed data, while the other term enforces spatial coherence (piecewise
smoothness). This framework has its interpretation in terms of a maximum a
posteriori estimation of a Markov random field (MRF) [13], [14], [15].

Every pixel p € P must be assigned a label in some finite set £. The aim
is to find the labeling f that assigns each pixel p € P a label f, € £, where f
is piecewise both smooth and consistent with the observed data. The labeling
f minimizes the energy

E(f) = Edata(f) + Esmooth(f)' (2'4)

Fomooth, measures to what extent f is not piecewise smooth, while Egu,
measures the disagreement between f and observed data. Fgn0tn should be
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discontinuity preserving. Considering the first-order Markov Random Fields
(MRF), the energy terms are

Edata(f) = Z Dp(fp) and Esmooth(f) = Z Vp,q(fp7fq)> (2'5)

pEP {p.ayeN

where N are the edges in the four-connected image grid graph. D, measures
how well label f), fits pixel p given the observed data; it is also referred to as the
data cost. D, needs to be nonnegative. Interaction penalty V), 4(fp, fy) is the
cost of assigning labels f, and f; to two neighboring pixels; it is also referred
to as the discontinuity cost. In general, V' must be metric or semimetric in
order to optimize it by graph cut algorithm [14]:

Vie,8) =0 & a=0, (2.6)
V(e, B) =V (B,a) 20, (2.7)
Ve, B) < V(e,y) + V(. 0), (2.8)

for any labels {«a, 8,7} € L. If V satisfies only (2.7) and (2.8) it is called a
semimetric. The simplest discontinuity preserving model is given by the Potts
model

V}hq(fm fq) =K- T(fp a fq) (2~9)

where T'(+) is 1 if its argument is true and otherwise 0, and K is some constant.
This model encourages piecewise constant labeling. The cost can be truncated
to make it insensitive to the outliers. The energy expression can be extended
to model occlusions [16], segment properties [17], etc. Another class of cost
function can be used for smoothing term, e.g. a truncated linear model where
the cost increases linearly based on the distance between the labels f, and f,
as

%,q(fpafq) = min(s - |fp_fq|ad) (2.10)

where s is the rate of increase in the cost, and d controls when the cost stops
increasing.

This pixel labeling problem is solved by energy function minimization using
graph cuts (GC), which is a combinatorial optimization technique [14, 18].

Bayesian Methods

Bayesian methods are global methods that model discontinuities and occlu-
sions [19], [20], [21], [22]. Bayesian methods can be classified into two cate-
gories: dynamic programming-based or MRF-based.
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Belief propagation (BP) is an efficient way to approximately solve inference
problems based on passing local messages [23], [24], [15]. Field specific BP
algorithms are also known as the forward-backward algorithm, the Viterbi
algorithm, iterative decoding algorithms for Gallager codes and turbocodes,
the Kalman filter, and the transfer-matrix approach in physics.

BP algorithm can be applied in stereo vision if the problem is defined using
pairwise MRFs. In that case a Markov network is an undirected graph with
observed and hidden nodes [22]. Nodes {ys} are observed variables, and nodes
{zs} are hidden variables i.e. disparity. By denoting X = {zs} and Y = {ys},
the posterior P(X|Y') can be factorized as:

PX|Y) o [[¥s(mavs) [T T tst(as, 20, (2.11)
s )

S teN(s

where g (x5, z¢) is called the compatibility matrix between nodes x4 and xy,
and 1s(xs, y¢) is the local evidence for node z5. In fact, ¥s(zs, ys) is the obser-
vation probability p(ys|xzs). N(s) represents the 4-connected neighborhood of
pixel s. If the number of discrete states of 4 is L, s (x5, 2¢) is an L x L matrix
and 1s(xs,ys) is a vector with L elements. Its form is identical to the posterior
probability for the stereo matching defined within the Baysian framework [22].
Thus, finding the maximum a posteriori (MAP) disparity map is equivalent
to finding the MAP of a Markov network meaning that BP algorithm can be
applied to efficiently find the disparity map.

Dynamic programming (DP) approaches perform the optimization in one
dimension assuming ordering and uniqueness constraints. Each scanline is
treated individually. This often leads to a streaking effect [4]. In [21], a
set of priors from a simple scene to a complex scene enforces a piecewise-
smooth constraint. In [19] only occlusion and ordering constraints are used.
One improvement of the DP algorithm is that it proposes a cost calculation
that considers whether the matching region is continuous, discontinuity or
involves occlusion in either of the images [25]. Tree-based DP performs a two
dimensional optimization [26, 27].

2.2.3 Semiglobal Algorithms

The Semiglobal Matching (SGM) method is based on the idea of pixel-wise
matching of Mutual Information (MI) and approximating a global two- di-
mensional smoothness constraint by combining many one-dimensional radial
constraints [28, 29]. The pixel cost and the smoothness constraint are ex-
pressed by defining the energy that depends on disparity map D, with the
addition of the smoothness constraint which penalizes changes of neighboring
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disparities. The greater the discontinuity, the more it is penalized. All costs
along the eight or sixteen radial paths are added up. The final disparity is
determined as in local stereo methods by selecting for each pixel the disparity
that corresponds to minimal cost.

SGM yields no streaking artifact. SGM minimizes global two-dimensional
energy as a function of disparity map, E(D), by solving a large number of
one-dimensional minimization problems. The energy functional is

E(D):Zp C(p, Dp) + Z I5| ‘T“Dp - Dq‘ =1+ Z Py T“DP - Dq‘ > 1]) (2.12)
qE€Np qeNp

Function T[] is defined to return 1 if its argument is true and otherwise
it returns 0. In energy equation (2.12), the first term calculates the sum
of a pixel-wise matching costs C(p, Dp) using, for example BT measure for
all pixels p = Ij(u,v) at their disparities Dp = D(u,v). The second term
penalizes small disparity differences of neighboring pixels q = I;(u + i, v + j)
in neighborhood Ny, of point p with cost P;. Similarly, the third term penalizes
larger disparity steps, i.e. discontinuities with a higher penalty Ps.

SGM calculates energy F(D) along one-dimensional paths from eight di-
rections toward each pixel. The costs of all paths are summed for each pixel
and disparity. The disparity is then determined on winner-take-all basis.

2.3 Similarity Measure and Matching Cost

The corresponding pixels in stereo images do not have the same gray intensities
or color due to noise, sampling, and the different and unknown gains and offsets
of the stereo cameras. This causes the Lambertian assumption to be only
approximately satisfied. To make a matching cost and a similarity measure
to be more robust to these image imperfections, the cost or similarity is not
calculated using only matching pixels but is instead aggregated over the local
region around the matching pixels.

The most common similarity measures and cost functions are the normal-
ized crosscorrelation (NCC), the sum of absolute differences (SAD), the sum
of squared differences (SSD). We consider the expressions for calculation of
the matching score between rectangular window of a size (2n 4+ 1) x (2n + 1)
around the current point (u,v) in left image I;, and a rectangular window of
the same size around the point with disparity d, with coordinates (u,v — d),
in the right image I,.

Normalized crosscorrelation (NCC), also known as zero-mean normal-
ized crosscorrelation (ZNNC), is a similarity measure calculated by formula



20 CHAPTER 2. STEREO CORRESPONDENCE

Yo > Wlutiv+d) =) - Te(u+iv+j—d) = po)
1 i=—n j=-n

Svec(u,v,d) = Sl o100 ,(2.13)

where p1 and po are mean values and where 1 and o9 are standard devi-
ations of the pixels within left and right matching windows.

ZNCC accounts for gain differences and constant offsets of pixel values.
The NCC always results in a number between —1 and 1, Syoc(u,v,d) €
[—1,1]. It should have a maximum for the corresponding disparity.

Absolute difference (AD) is a pixel-wise cost:

Cap(u,v,d) = |j(u,v) — L (u,v — d))|. (2.14)

Sum of absolute differences (SAD) aggregates the AD of the pixels within
the matching region :

Csap(u,v,d) = ZZ|Ilu+zv+]) I(u+i,v+75—4d))|. (2.15)

i=—n j=—n

AD and SAD assume the corresponding pixels to be identical. There is
also a zero-mean sum of absolute differences (ZSAD). The mean window in-
tensity is subtracted from each intensity inside the window before computing
the sum of absolute differences:

Czsap(u,v,d) Z Z |[i(u+i,v+7) —p1 — (L(uti,v+ 5 —d) — pe)| .(2.16)

i=—nj=—n

Sum of squared differences (SSD) is a cost measure

Cssp(u,v,d) = Z Z (L(u+i0+7) — Llu+iv+j—d)?*. (217)

i=—nj=—n

Common measures can be applied also for colored instead of gray images.
For color images, the sum of absolute differences can be defined as the maxi-
mum absolute difference of the color channels [30].
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Improved common measures The common measures can also be im-
proved by combining them with some certain other custom measures. For
example, the SAD measure can be improved by extending it by the gradient
measure, [31],

C = (1—11)) -CSAD(u,v,d)+w‘C’GRAD(u,v,d) (2.18)

where w represents optimal weighting factor calculated through several itera-
tions and Cgrap(u,v,d) is a gradient based cost.

Birchfield and Tomasi measure (BT) reduces the dissimilarity in high-
frequency regions [32], [33]. The BT measure computes the sampling insen-
sitive absolute difference between the extrema of linear interpolations of the
corresponding pixels of interest with their neighbors:

Cpr = min(A,B), (2.19)
A = max(0, (u,v) — I™(u,v — d), ™™ (u,v — d) — I(u,v))
B = max(0, I .(u,v —d) — I"(u,v), [""(u,v) — I.(u,v — d))
I (aw) = min(Ty, (), Ty (s 0), 17, (u,0)
I (u,v) = max([& (u,v), I(u,v), Il'; (u,v))
— Il r(u U_l)"i']lr(uvv)
Il/r(u, v) = / 5 /
Iy (u,v 4+ 1) + 1y (u,v)
IlJ/FT(u v) = / 5 / .

Filter-based matching measures are mean filter, Laplacian of Gaussian
(LoG) filter, or bilateral filter. The filtering results in conjunction with BT,
or AD measure can be used in a global pixel-wise matching framework [33].
Mean filter (MF) subtracts from each pixel the mean intensities within
a squared window centered at the pixel of interest. Thus, the mean filter
performs background subtraction for removing a local intensity offset:

Ir(u,v) = I(u,v) — 2n+1 oW Z Z (u+i,v+ 7). (2.20)

i=—nj=—n

Laplacian of Gaussian (LoG) is a bandpass filter, which performs smooth-
ing, removing noise and an offset in intensities. The filter is often used in local
realtime methods [34]. In [33] a LoG filter with a standard deviation of o pixel
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is used, which is applied by convolution with a squared LoG kernel:

2 2 w2402
“;2” >e‘%a2 . (2.21)
g

1
ILOG =I® KLOGa KLOG = - 1 (1 -
Yixea

Bilateral filter [35], [36], [33], is smoothing technique that preserves the
edge. It sums neighboring values weighted according to proximity and color
similarity. Background subtraction is implemented by subtracting from each
value the corresponding value of the bilateral filtered image. The parame-
ters of the bilateral filter are the window size M x M, a spatial distance o,
which defines the amount of smoothing, and a radiometric distance o, which
prevents smoothing over high-contrast texture differences. This effectively
removes a local offset without blurring high-contrast texture differences that
may correspond to depth discontinuities. On intensity images, the radiometric
distance is computed as the absolute difference of intensities; on color images,
the distance in CIELab space is used, as suggested in [35]

z": z": I(u+i,v+j)e’e”

i=—nj=—n

Ipisup(u,v) = I(u,v) — —— : (2.22)
> Iutiv+)
t=—nj=—n
where , )
(i —J) (I(u+i,v+j) = I(u,v))
v 702 . (2.23)

Mutual information (MI) measure calculates the joint probability distri-
bution Py, j, of corresponding intensities in images [; and I, which is necessary
for calculation of the estimate of the joint entropy hy, 1, as well as for estima-
tion of image entropies h; and h, [37], [28]. The probability distribution P, r.
is calculated on the basis of the histogram of the corresponding intensities,
[28]. The starting disparity map for P;, ;. calculation can be obtained by cor-
relation. The cost is calculated as negative mutual information miy, , (u, v, d)

CM[(U,U,d) = —mill’lr(u,v,d). (2.24)

This cost measure is well suited for reach-textured regions and is invariant to
radiometric differences such as camera gain and bias uncertainties and specu-
larities [37, 38, 33].
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Nonparametric matching costs are rank filter, soft rank filter, census
filter and ordinal measure [33]. These matching scores are robust against
intensity outliers. They use only the local ordering of intensities and are robust
to all monotonic mapping radiometric changes. These measures transform
image intensities. The transformed images are matched with, for example,
the absolute difference.

Rank filter replaces the intensity of a pixel with its rank among all pixels
within a certain neighborhood Np, for example within a rectangular window
of size 2n+1) x (2n+1)

Tpank(u,0) = > > T[I(w,0) < I(u+j,v+19)], (i,5) # (0,0). (2.25)

t=—nj=—n

The function T[] is defined to return 1 if its argument is true and 0 other-
wise. The rank filter was proposed to increase the robustness of window-based
methods to outliers within the neighborhood, which typically occur near depth
discontinuities and leads to blurred object borders [39]. The Rank filter is sus-
ceptible to noise in textureless areas.

The soft rank filter was proposed to reduce the influence of noise in tex-
tureless areas by defining a linear, soft transition zone between 0 and 1 for
values that are close together:

LsoftRant(u, v) = Z Z min <l,max (0, Hw,v) = I(;: +ivti) + %)) , (2,7) # (0,0), (2.26)

i=—nj=-n

where ¢ is a threshold [33].

The census filter defines a bit string where each bit corresponds to a certain
pixel in the local neighborhood around a pixel of interest. A bit is set when
the corresponding pixel has a lower intensity than the pixel of interest. Thus,
census filter not only stores the intensity ordering as rank filter does, but
also the spatial structure of the local neighborhood. The transformed images
can be matched by computing the Hamming distance between corresponding
bit strings [39]. The performance of census is superior to rank [39], but the
computational time is longer due to the calculation of the Hamming distance.

The ordinal measure, [40], is based on the distance of rank permutations
of corresponding matching windows and requires window-based matching. Its
potential advantage over rank and census filters is that it avoids dependency
on the value of the pixel of interest.
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2.4 Matching Primitives

The starting point in local as well as in global stereo correspondence meth-
ods is calculation of the matching score using the local neighborhood around
the matching pixel. With respect to what kind of local region is taken into
account, we distinguish between pixel-based and area-based methods. Global
algorithms are usually pixel-based, and data energy term is usually calculated
strictly on the basis of the values of the matching pixels. This is acceptable
because other terms in the energy functional take into account the neighboring
pixels and because the optimization is global. On the other hand, local corre-
spondence algorithms are usually area-based and local pixel areas are used in
cost or similarity calculation. Area-based stereo methods match neighboring
pixels within generally rectangular window.

Algorithms based on rectangular window matching yield an accurate dis-
parity estimation so long as the majority of the window pixels belongs to the
same smooth object surface, with only a slight curvature or inclination rela-
tive to the image plain. In all other cases, window-based matching produces
an incorrect disparity map: the discontinuities are smoothed, and the dispari-
ties of the high-textured surfaces are propagated into low-textured areas [44].
Another restriction of window-based matching is the size of objects whose
disparity must be determined. Whether the disparity of a narrow object can
be correctly estimated depends mostly on the similarity between the occluded
background, visible background, and object [34]. Algorithms which use suit-
ably shaped matching areas for cost aggregation result in a more accurate
disparity estimation [73],[76], [66], [77], [68], and [75]. The matching region
is then selected using pixels within certain fixed distances in RGB, CEILab
color space, and/or Euclidean space.

Rectangular window matching is a common approach in real time appli-
cations because of its low computational load and efficient hardware imple-
mentation [41], [42], [43]. Inherently, the fronto-parallel disparity regions are
assumed. The window matching produces unwanted smoothing and creates
the phenomena of fattening and shrinkage of a surface, causing that surface
with high intensity variation to extend into neighboring less-textured surfaces
across boundaries [44]. A way to remove any fattening effect is to employ the
adaptive weight scheme using bilateral filtering [35]. Window-based matching
is not suitable for stereo images with surfaces with projective distortion. To
reduce the effect of projective distortion, it is necessary to estimate the surface
orientation and to take it into account during matching, or to use matching
using adaptive windows.

A way to obtain a more accurate disparity estimation around disparity
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discontinuities is to apply a shiftable window approach. A shiftable window
approach considers multiple square windows centered at different locations and
uses the one that yields the smallest average cost [45], [20]. In this approach
the size of the window is fixed. Shiftable windows can recover object bound-
aries quite accurately if both foreground and background regions are textured,
and as long as the window fits as a whole within the foreground object. A
generalization of the shiftable window method is to employ a variable support
strategy on all points detected close to a depth edges, where the final match-
ing cost is obtained by averaging the error function along those displacement
positions detected as lying on the same border side [46], [34].

Improved accuracy by window matching is possible by variable support
i.e. by allowing the support to have any shape instead of being built upon
rectangular windows only, or by assigning adaptive weights to the points be-
longing to the support window. Area-based algorithms use an alternative
approach and vary the size and shape of the window rather than its displace-
ment [47]. This allows the use of bigger areas within low-textured regions
for the matching score calculation. Segment-based matching adapts to local
characteristics of the image data. One of the first segment-based algorithms
is iterative algorithm as given in [48]. Mean shift [49] is the most common
algorithm for image segmentation in homogenous color regions [29, 29, 31]. In
segment-based matching, it is assumed that disparity inside a segment follows
some particular disparity model, for example constant, planar, or quadratic.
A drawback of segment-based matching methods is that depth discontinuities
may not lie along color boundaries [50], [51].

2.5 Disparity refinement

A disparity map estimated by the correspondence algorithm may contain er-
rors. It can contain areas of incorrect disparity values caused by large low
-textured areas. It can also contain isolated disparity errors with significantly
different disparity from the neighborhood disparities, so called outliers, caused
by isolated pixels or groups of several pixels. Also, there may be disparity er-
rors caused by occlusion. The disparity errors are detected and corrected for
in a postprocessing.

The postprocessing step performs a disparity consistency check between
disparity maps estimated for both stereo images, eliminates inconsistent dis-
parities, and estimates new values for the eliminated disparities.



26 CHAPTER 2. STEREO CORRESPONDENCE

2.5.1 Dealing with the Occlusion

Occlusion refers to points in a scene which are visible in one but not in the
other image due to scene and camera geometries [3]. Points that are visible in
one of two views provided by a binocular imaging system are also termed as
binocular half-occluded point [52]. The depth of half-occluded points can not
be estimated from the stereo images. Matching methods can be classified into
three categories with reference to how they deal with occlusion: methods that
detect occlusion, methods that reduce sensitivity to occlusion, and methods
that model occlusion geometry [3].

The simplest approach to occlusion regions is to detect them. Occlusion
can be observed as the outlier in disparity maps and be eliminated by median
filtering. The consistency assumption can also be used for occlusion detec-
tion, provided that two disparity maps are calculated. One disparity map is
based on the matching of the left image against the right image and the other
based on the matching of the right image against the left. Areas with incon-
sistent disparities are assumed to be occluded. This method is also known as
Left-Right Checking (LRC) and as left-right cross/consistency checking. The
consistency check is based on the occlusion constraint. Both occlusion and
mismatches can be distinguished as part of the left/right consistency check
[29, 28]. The ordering constraint can also be used to detect disparity outliers,
although it is not correct for narrow structures, [22].

A comparison of five different approaches for occlusion detection is pre-
sented in [52]. The methods considered are Bimodality (BMD), Match Good-
ness Jump (MGJ), Left-Right Checking (LRC), Ordering (ORD) and the Oc-
clusion constraint (OCC). Bimodality (BMD) occlusion detection is based on
the principle that points around occlusion points will match to both the oc-
cluded and occluding surface, creating a bimodal distribution in a local his-
togram of the disparity image. In such regions, the histogram of the disparity
should be bimodal. The peak ratio is the ratio of the second highest peak
versus the highest peak. The peak ratio test determines whether there is any
bimodality. The Match Goodness Jump (MGJ) detects adjacent regions of
high /low scores in goodness-of-match. It must be concluded that it does not
appear to lead to a simple one-dimensional goodness ranking of the meth-
ods. LRC performs well in highly textured scenes, and OCC performs well
given a matcher with smoother error characteristics. In scenes with weak tex-
ture, MGJ labels occlusions in a reasonable fashion outperforming the other
methods in similar situations. For scenarios where three-dimensional border
detection is of primary interest, including borders that do not manifest them-
selves as half-occlusions, BMD performs well, although with a tendency to over
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segment the scene. Overall, ORD is the most conservative measure, although
it can still produce false positives and is sensitive to the double-nail illusion.

It is desirable to integrate knowledge of occlusion geometry into the search
process. This is done within global correspondence methods. In [21], the priors
that address a more complicated model of the world, for a series of Bayesian
estimators are defined. These are used to define cost functions for dynamic
programming.

The use of robust matching measures, such as normalized cross-correlation
and nonparametric costs, is one way to reduce the sensitivity of matching
to occlusion and to other image differences such as perspective differences
and sensor noise. Nonparametric transforms are applied to image intensities
before cost calculation [39]. Since these methods rely on relative ordering of
intensities rather than on the intensities themselves, they are somewhat robust
to outliers. However, the presence of occlusion in a stereo image pair produces
disparity discontinuities that are coherent. In other words, while they are
outliers to the structure of interest, they are inliers to a different structure.

Another approach to reduce sensitivity to occlusion is to adaptively resize
the window and shape in order to optimize the match similarity near occlu-
sion boundaries. In [53], an iterative method for determining window size is
proposed. In area based matching algorithms, to alleviate the fronto-parallel
assumption, some approaches allow the matching area to lie on the inclined
plane, such as in [78] and [79]. The alternative to the idea that properly shaped
areas for cost aggregation can result in more accurate matching results is to
allocate different weights to pixels in the cost aggregation step. In [54], the
pixels closer in the color space and spatially closer to the central pixel are given
proportionally more significance, whereas, in [69], the additional assumption
of connectivity plays a role during weight assignment.

2.6 Evaluation of Stereo Algorithms

The de facto standard for stereo algorithm evaluation, widely accepted within
the vision community, is the Middlebury online evaluation benchmark [6]. It
evaluates estimated disparity maps by a stereo algorithm of four benchmark
stereo image pairs and ranks the results within the online evaluation list. The
benchmark stereo pairs are of different size and disparity range, with different
scene geometries and versatile texture. The benchmark for stereo algorithms
is done on the base of the taxonomy and quantitative evaluation of dense,
two-frame stereo algorithms introduced in [4].

The evaluation of the stereo algorithm within the Middleburry framework
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is done by examining the error percentage within non-occluded regions, dis-
continuity regions and occluded regions in estimated disparity maps for all
four reference images. Test data and rankings are provided on the Internet
[6]. At the moment, the database includes more than 130 ranked algorithms.
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Models and Particle Filtering !

In this chapter we investigate a new approach to stereo matching using prob-
abilistic techniques and demonstrate that particle filtering is a suitable tech-
nique for this application. The potential advantage of particle filtering over
other approaches is its flexibility and the ease of incorporating more complex
knowledge of the scene into the probabilistic model. We perform the match-
ing using a pair of rectified stereo images, assuming that the scene statistics is
described by a first order hidden Markov model (HMM). Stereo matching is
treated as state estimation, where the state variable is the disparity. Evolution
of the state variable happens along the epipolar line. The transition proba-
bilities allow for continuous and abrupt transitions, i.e. changes in disparity.
The likelihood values are derived using the normalized crosscorrelation map
(NCC).

This paper presents the first implementation of particle filtering in con-
junction with HMM applied to stereo correspondence. We demonstrate that
particle filtering with HMM can be successfully applied to stereo matching.

LThis chapter is based on the paper S. Damjanovi¢, F. van der Heijden and L. J. Spreeuw-
ers, ”Stereo Matching Using HMM and Particle Filtering”, ProRISC 2008, Veldhoven, The
Netherlands
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3.1 Introduction

Stereo matching is a correspondence problem whose aim is to find the corre-
sponding points in stereo images. Stereo images are two images of the same
scene taken from different viewpoints. The corresponding scene points in im-
ages are always at the corresponding epipolar lines. If the geometry of the
acquisition system is known, it is possible to rectify the images so that the
epipolar lines become horizontal and parallel to the scan lines. The problem
of matching between images can be regarded as a problem of optimizing a
cost or a similarity function. The global optimization in stereo matching is
often performed using dynamic programming [19], [2]. Dynamic programming
(DP) is a way of efficiently minimizing functions of a large number of discrete
variables.

We approach the stereo matching problem as a state estimation problem
using probabilistic based algorithms. We choose a one-dimensional hidden
Markov model (HMM) as a prior since HMM is a special state space model
in which the state space is discrete [55]. We derive the likelihood from nor-
malized cross-correlation (NCC) coefficients and apply different probabilistic
based algorithms for disparity calculation. In addition, we define a perfor-
mance criterion and compare the performance of different probabilistic based
algorithms against the performance of dynamic programming. We compare
the probabilistic estimators against a non-probabilistic dynamic programming
algorithm. We have chosen dynamic programming as a reference for the per-
formance comparisons because dynamic programming has often been used for
stereo matching, but not much in a probabilistic context.

Stochastic approaches such as sampling-based methods, including particle
filters and particle filters followed by a smoothing step, can as well be used
to find the global optimum. Particle filters are of interest for stereo matching
since they can establish more complex models of the scene [56], [57]. Parti-
cle filters are a probabilistic-based algorithm based on a state space model.
Therefore, particle filters must also be able to handle HMMs. Also, several
other algorithms for HMMs are commonly used: thee Viterbi algorithm, the
forward algorithm and the forward/backward algorithm [55]. We apply these
to stereo matching.

The probabilistic-based algorithms: Viterbi, forward and forward /backward,
are a kind of belief propagation algorithms. Belief propagation (BP) is an ef-
ficient way to approximately solve inference problems based on passing local
messages [24]. There is a connection between non-probabilistic DP and the
Viterbi algorithm. DP is a kind of Viterbi algorithm where only transitions
between adjacent states are allowed. On the other hand, the Viterbi algo-
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rithm allows transitions between any two states of the sate space model. An
algorithm in between DP and the Viterbi algorithm has been proposed in the
literature. It uses the reduced trellis diagram for state estimation allowing
only a finite number of transitions between neighbouring states [58].

In this chapter, we define stereo matching as a one-dimensional state
estimation problem with the goal of investigating how particle filters and
smoothers fit into this framework. We investigate whether particle filters and
smoothers in conjunction with one-dimensional HMM can be applied to stereo
matching. We keep the state space model one-dimensional and compare par-
ticle filter and smoothers with other probabilistic based estimation algorithms
that are commonly used with HMMs and with the reference non-probabilistic
DP. We expect the particle filters and smoothers to compare well with other al-
gorithms for this simple state space model. If this holds, then a more complex
prior may be used with particle filter to better capture the scene characteristics
and produce more accurate estimates [59].

The chapter is organized as follows. In section 3.2 we introduce a proba-
bilistic framework for stereo matching using one-dimensional HMM. In section
3.3, we introduce the probabilistic based algorithms for stereo matching. In
section 3.4 we summarise the fundamentals of the reference non-probabilistic
DP. Experiments are reported in Section 3.5. In Section 3.6, the conclusion
and further directions of work are given.

3.2 Probabilistic Framework for Stereo Matching

We consider the fully calibrated image acquisition setup, and the stereo match-
ing is done along epipolar lines of the rectified images [2]. We approach the
disparity calculation along the epipolar lines as state estimation problem [55],
where the disparity is a discrete state variable. In state estimation, the state
variable of interest changes over time. In the application to disparity cal-
culation, the state variable evolution happens with the increment of the z-
coordinate of the epipolar line in the reference image, while the time index
of the state variable, present in the classical state estimation approach, is re-
placed by the x-coordinate value. Hence, the terms ’previous’ and 'next’ state
refer to the disparity values with the smaller or larger value of the x-coordinate
than the x-coordinate of the observed, i.e. ’current’ disparity denoted by d.
The length of the state sequence is the number of pixels in the reference epipo-
lar line for which the disparity values are calculated. It is determined by the
size of the window used for the likelihood calculation. If the size of the window
is denoted by W, = 2-w, + 1 and the length of the referent epipolar line by L,
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then the z-coordinate takes consecutive values from the array [w, + 1, L —wy].

Application of the probabilistic algorithms for state estimation requires a
knowledge of the transition probability and the likelihood function. The tran-
sition probability P;(dy+1|dy) is the probability that the state at position z+ 1
is d,+1 given that the previous state at x is d,. The discrete state variable d,
takes values from the set Qg = {Kpin, Kmin + 1, Kmin + 2, ..., Kinaz} , where
Kpnin and K4, are the minimum and the maximum disparities between im-
ages. The number of different states is equal to the number of different possible
disparity values, K = K02z — Kmin + 1. The initial probability, at the coor-
dinate = = 0, is taken as Py(dy) = P;(di|dp = 1). The transition probabilities
are given in the form of KxK matrix whose element in the m!” row and nt”
column is the transition probability P;(dy+1|dz = m). The sum of all transi-
tion probabilities for a fixed state d 41 is equal to 1, Z(ZHZI P(dyy1ldy) = 1.
The probability that the state variable changes its value in the next time in-
stant is inversely proportional to the absolute difference of the consecutive
state values. The state variable has the highest probability of keeping the
same value and that probability is the same for all states. The probability
decreases linearly with the absolute discrepancy of the consecutive variable
values up to transmax. The probability Pj,.m,, that the absolute discrepancy
between two state-variable values lies in the range of [transmaz, jumpmaz]
is a small constant value e.g. Pjymp < 0.15, while the probability Py ie, that
the absolute discrepancy between two consecutive values of the state variable
is higher than jumpmax is constant and close to zero. Figure 3.1 illustrates
the shape of the transition probability P;(d,t1| dz = n).

Together with the likelihood function, the transition probability forms the
HMM. The likelihood function is the probability of the observation given the
true state. We derive a heuristic expression based on NCC coefficients.

The number of states of the HMM is equal to the range of disparities i.e.
every possible disparity value is represented as a state in the state-space model.
We consider the common behaviour of the disparity values along epipolar lines
in order to properly choose the HMM. The disparity value stays the same for
flat fronto-parallel surfaces of the scene and changes for slanted surfaces, along
the epipolar line. As can be seen in figure 3.1, the variable has the highest
probability of staying in the same state. The probability sharply decreases
with difference A = |dy4+1 — dg| up to A = transmq,. The probability of tran-
sitions with a greater difference A € [transmqaz, JuMPmaz|, 'jumps’ in other
words, is smaller and constant. The probability of outlier transitions, when
the state change is greater than jumpy,qaz, is rather small and can perhaps be
neglected. The total probability of the jump transitions and the total proba-
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Figure 3.1 HMM: Transition probability P;

bility of the outlier transitions are denoted as Pjym, and P, respectively.

The likelihood function, defined on a position x on an epipolar line in the
reference image, and on a position x + d on the corresponding epipolar line
in the other image, p(z1, 4, 22, 24d,| dz = k), k € [Kmin, Kmaz], * € [wy +
1, L — w,] represents a similarity measure of the quadratic W, x W, windows
of pixels z1 ., surrounding the pixel in the reference image at a position z, and
the windows 23 4, surrounding the pixel at position x+d, in the other image
of the stereo pair. In fact, it is defined as the probability density of having
the observed image data in the windows when the true disparity is given. The
NCC is another measure of similarity between two pixel-windows in images.
It inherently compensates for their different offsets and gains [3, 2]. Using the
NCC coefficients NCC(x, dy = k), k € [Kmin, Kmaz], © € [wy +1, L —w,]| as
an approximation of the likelihood is not suitable. Firstly, the NCC coefficients
can be negative, while the likelihood function should always be nonnegative.
Secondly, the small ratio between NCC coefficients is not sufficient for proper
differentiation between different state values. Empirically we found that the
following simple transformation keeps the same order of the values of the
coefficients and gives a suitable metric that resembles the desired properties
of a likelihood function:

1
X 1-NCC(z, dy = k)’

p(zl,za Z2,x+dz|dw — k) (31)

The expression is defined up to a proportionality constant, but not relevant
since, for instance, in the particle filter the resulting posteriors are normalized
anyhow.
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3.3 Probabilistic Stereo Matching Algorithms

Stereo matching is defined as the estimation of the disparity state variable d,
along the epipolar line, x = w, + 1, ..., L — w,, using HMM. There are two
types of state estimations: online and offline. If estimation of the state is done
online (in real-time), the estimate is then obtained on the basis of the previous
and current measurements, as in the case of the forward algorithm and particle
filtering. If estimation is done offline, then the estimate is obtained not only
using the measurements from past and present, but also by using the mea-
surements that were made after the time instant of the state being estimated.
The offline estimation is done by back propagation through the measurement
sequence, same as in the forward/backward algorithm and smoothing. The
role of the time index is substituted by the z-coordinate of the pixel position
in the image (see Section 3.2). As all pixels values are known, we can apply
both online and offline algorithms.

Applying the forward algorithm, the disparity values are calculated using
the maximum a posteriori (MAP) criterion. The forward/backward algorithm
results in disparities along the epipolar lines whose individual disparities have
minimal error, while the Viterbi algorithm provides the most likely sequence
of disparity values [55]. A detailed description of probabilistic algorithms is
given in Chapter 4.

MAP estimation is also done within the particle filtering framework. Es-
timation of the posterior probabilities or filtering distribution can be realized
using the standard filtering recursions via the Chapman-Kolmogorov equation

pdet1| Z(x)) = /p(dm\ Z(x)) - pe(da-y1]de)d(de ) (3.2)
and via Bayes’ rule for the update

(21, 2415 22, a414dyis | da1)P(dot1| Z(x))
(21,2, 22,24d, | Z(2))

In (3.3), Z(x) = {(21,4, 22,i+dy )i<z, de=Kmin,....Kmaz } 1-€- Z(x) represents
pairs of patches in images for which the disparity is calculated. The approx-
imation strategy for the posterior probability density (3.2) is the sequential
Monte Carlo method, known as particle filter [55]. Within the particle fil-
ter framework, the filtering distribution is approximated by an empirical dis-
tribution formed of the point of masses, or particles [60]. So the posterior
probability distribution is given by the particle approximation as

P(deyr| Z(x +1)) = (3-3)

Np
p(do| Z(2)) = 3wl 6(dy — di) (3.4)
n=1
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where 0(-) is the Dirac delta function, IV, is the number of particles. The

(n)

normalized importance weights w, . are chosen as
NP
wg;)mm = p(z@]dM), sz(,n'rz,orm = 17wz(,nrzorm >0, 2% = (21,0, 22,04a,)- (3.5)
n=1

The number of particles IV, should be sufficiently large in order to represent
properly the posterior distribution by means of a set of samples. For the
purpose of comparison with the forward algorithm, the state estimation is
performed with the MAP criterion.

Smoothing can be performed recursively backward using the smoothing
formula

P(da| Z(2))pi(dai1| da)
P(day1| Z(2))

Smoothing is applied in addition to particle filtering to generate the real-
izations of the entire smoothing density p(dz=w,+1, ..., L—w.,| Z (7)) based on the
forward particle filtering results, [60]. The estimated sequence is equal to the
sequence of the most probable individual states.

pde|Z(z)) = /p(dr+1| Z(x)) d(det1) (3.6)

3.4 Dynamic Programming

Dynamic programming computes the minimum-cost path through the matrix
of all pairwise matching costs between two corresponding scanlines [4]. In the
case of nonexistent match i.e. occlusion, a group of pixels in one image is
assigned to a single pixel in the other image.

Figure 3.4 schematically shows how DP works. For each pair of correspond-
ing scanlines, a minimizing path through the matrix of all pairwise matching
costs is selected. Lowercase letters a to k symbolize the intensities along each
scanline. Uppercase letters represent the selected path through the cost ma-
trix. Matches are indicated by M, while partially occluded points, which have
a fixed cost, are indicated by L or R, corresponding to points only visible in
the left or right images, respectively. Usually, only a limited disparity range is
considered indicated by the non-shaded squares. The disparity range in Figure
3.4 is 0 to 4.

To implement dynamic programming for a scanline, each element in a two-
dimensional cost matrix C'(m,n) is computed by combining its value with one
of its predecessor cost values. Using the representation shown in figure 3.4,
the aggregated match costs can be recursively computed as
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Figure 3.2 Stereo matching using dynamic programming, [4]

C(m,n, M) =min(C(m—1,n—1,M),C(m—1,n,L), D(m—1,n—1, R))+Ci(m,n)
C(m,n,L) =min(C(m—1,n—1,M),C(m—1,n,L))+ O
C(m,n,R) = min(C(m,n —1,M),C(m,n—1,R)) + O, (3.7)

where O is a occlusion penalty and Cj(m,n) is a matching cost of individual
pixels at position m in the left scanline and at position n in the right scan
line.

Within our probabilistic framework, the DP algorithm can be interpreted
as a Viterbi algorithm whose HMM only allows transitions to the same state
and to two immediately neighboring states.

The matching cost of the individual pixels is calculated using windows
around pixels and normalized crosscorrelation as

Ci(m,n) =1— NCC(m,m — n). (3.8)

Transformation (3.8) maps normalized crosscorrelation NCC/(m, m—n), which
is similarity measure with a value between —1 and 1, to cost Cy(m,n) with a
value between 2 and 0.

3.5 Experiments

We illustrate stereo matching, using non-probabilistic dynamic programming
and probabilistic-based algorithms, on a rectified stereo pair Bowling2 shown
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Figure 3.3 Stereo pair Bowling2 from [6]: (a) left image, (b) right image,
and (c) ground truth disparity

in Figure 3.3 (a) and (b), [33, 6]. The purpose of the experiments is to com-
pare the performance of probabilistic based algorithms with a standard non-
probabilistic algorithm DP with similar functional structure, to compare the
performance of the different optimization criteria of the probabilistic algo-
rithms and to check whether particle based algorithms perform equally as the
HMM based algorithms with the same optimization criterion. These experi-
ments are the first, preliminary experiments involving comparison of different
algorithms within our one-dimensional probabilistic stereo matching frame-
work.

The disparity values range from 19 to 99, while the occluded pixels are
assigned the value 0. So we choose an HMM with K,,;, = 19 and K4, = 99.
We select the parameters for the state transition probabilities: P,,; = 0,
Pjymp = 0.05, jumpma, = 8 and transyq, = 3. The size of the windows for the
calculation of the NCC coefficients is W, = 31. The number of particles used
in the particle filtering is IV, = 1000 and in the smoothing step Np,ct, = 100.

The recovered disparity maps and absolute error maps are very similar.
This confirms that the probabilistic techniques can be successfully applied to
the stereo matching. The similar have the same causes, namely, the size of
the windows used in the calculation of the NCC coefficients and correspond-
ingly likelihood values, limit more precise depth calculation. Smaller windows
would yield better results concerning occlusion detection. Also, the perspec-
tive distortion is not taken into account. Similarly, the simple prior does not
model occlusions.

The smooth parts of the scene (the ball and the pins), are matched very

well with small error (dark regions in absolute error maps in figures 3.4 b), d),
f) and h), and in figures 3.5 b) and d). We expect that the probabilistic algo-
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Figure 3.4 Estimated disparity maps and their error maps with reference
to the ground truth disparity map using dynamic programming (a) and (b),
forward algorithm (c) and (d), forward-backward algorithm(e) and (f), and
Viterbi algorithm (g) and (h)
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Figure 3.5 Estimated disparity maps and their error maps with reference
to the ground truth disparity map using: (a) and (b) particle filtering, (c) and
(d) with smoothing algorithm

rithms can be successfully applied to stereo matching of objects with smooth
surfaces and used in e.g. reconstruction of faces.

The quantitative quality comparison is given in Table 3.1. For all cases the
percentages of the recovered disparity values which are identical to the ground
truth disparities are given in column (g, while columns Q1 and Q)2 show the
percentages of the recovered disparities within the range of =1 and +2 of the
ground truth values. The percentage values for the particle filtering result
are quite comparable with those of other algorithms. The values along the
columns are roughly equal. It would be expected that the algorithms which
include the explicit or implicit back propagating step (the forward/backward
algorithm, the particle filtering followed by smoothing and the Viterbi algo-
rithm) recovered the disparity map more accurately.

3.6 Conclusion and Further Work

We have demonstrated that HMMs and particle filtering can successfully be
applied to stereo matching. In these first experiments, we used the simple
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Table 3.1 Quality of disparity maps

Algorithm Qol%) Qil%) Q%)
dynamic programming 43 67 72
forward alg. 47 68 72
forward /backward alg. | 46 68 72
Viterbi alg. 48 69 73
particle filtering (PF) 45 68 72
PF with smoothing 43 66 71

HMM and the likelihood function based on NCC coefficients. The performance
of particle filtering is comparable to that of dynamic programming.

Further improvement of the performance of this probabilistic stereo match-
ing approach could be achieved by including more complex knowledge of the
scene and a more advanced likelihood function. We expect improvement of the
quality of disparity estimation by further exploitation of the flexibility of the
particle filtering and by inclusion of scene knowledge by choosing a suitable
prior.



Comparison of Probabilistic Algorithms
Based on Hidden Markov Models for State
Estimation *

In this chapter, we present an overview of five probabilistic algorithms based
on one-dimensional hidden Markov models. We chose HMM as it is suitable
for disparity estimation, vary parameters and compare their performance. We
compare the forward, forward/backward and Viterbi algorithms, the particle
filter and the particle smoother. Next, we apply HMM to stereo matching.
We perform stereo matching using a pair of rectified stereo images assum-
ing that the state variable is disparity and that the scene statistics along the
epipolar line is described by a first order hidden Markov model. We compare
the performance of the five probabilistic algorithms when applied to dispar-
ity estimation using the same HMM and then compare this performance to
nonprobabilistic dynamic programming.

1S. Damjanovié, F. van der Heijden and L. J. Spreeuwers, Technical reports: TR s&s
009_08 and TR s&s 010_08, Signals and Systems, University of Twente, 2008

41
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4.1 Introduction

We compare five probabilistic algorithms for state estimation with respect
to the number of correctly estimated states of the same discrete sequence
generated by a hidden Markov model (HMM) [55], [61]. We compare the
forward algorithm, the forward-backward algorithm, the Viterbi algorithm,
particle filtering, and particle filtering followed by smoothing.

HMDMs describe a state variable evolution over time starting at time instant
i = 0. The discrete state variable x (i), at time instant i, takes its value from
a finite set of states Q = {w1,...,wx}. The state sequence z(i), i = 0,1,..1,
where I+1 is the length of sequence, is hidden and thus not directly observable.
The sequence z(i), i = 0,1, ..., I, also satisfies the Markov condition, meaning
that the probability of x(i), under the condition of all previous states, is equal
to the transition probability

Pa(i)[2(0), ..., (i — 1)) = Py(x(i)|z(i — 1)). (4.1)

The information about the hidden process z(i), i = 0,1,...,I, is available
through the observation (measurement) sequence z(i), ¢ = 0,1,...,I, where
z(i) takes its value from a finite set Z = {¥1, ..., x5 }. The measurement z(7),
i =0,1,...,1, of an HMM is memoryless, i.e. the measurement z(i) depends
only on z(7) and not on the states at other time instances, and the observation
probability is given by

P(2(j)[2(0), ..., 2(5)) = P:(2(j)]x(5))- (4.2)

The finite-state HMM is defined by the sets {2 and Z, the initial state proba-
bility Py(z(0)), the state transition probability P(x(i)|x(i—1)) and the obser-
vation probability P,(z(j)|x(j)). For a discrete finite HMM, the observation
probability P.(z(j)|x(j)) is a conditional probability and can be defined by a
probability mass function p,(z(j)|z(j)), [62]. P.(2(j)|=(j)) can also be given
by a likelihood function.

4.2 Probabilistic Algorithms Based on HMMs for
State Estimation

The task of state estimation is to determine the optimal estimate of the state
sequence X (I) = {z(0),...,z(I)}, based on the measurement sequence Z(I) =
{#(0), ..., 2(I)} of the given HMM. If the state estimation is done online (in real-
time), the estimate of the state is done on the base of the previous and current
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measurements as in the case of the forward algorithm and the particle filtering.
If the estimation is offline, the estimation of the state is done not only using
the measurements from previous and current, but also using the measurements
which occurred after the time instant of the state being estimated. Offline
estimation is done by back propagation through the measurement sequence as
in the backward algorithm and in the particle smoother.

4.2.1 Forward Algorithm

The sequence of measurements is processed online to obtain the real-time
estimates of the state z(7), using the measurements Z(i) acquired up to and
including the time instant . The solution of the forward algorithm is obtained
by maximizing the posterior probability

Pa(h)| (i) = gy, (4

which is equivalent to the maximization of the joint probability P(Z (i), z()),
because P(Z(i)) is constant for a given i. Therefore the maximum a posterior
(MAP) estimate is found as

Tyap(i]i) = arginaX{P(Z(i)» k)}, (4.4)

where the probability P(Z(i), k) is calculated by the forward algorithm by
means of recursion [55] as

K
P(Z(i), (i) = Y P(Z(i), 2(i), 2(i - 1)) (4.5)
z(i—1)=1

= > Pa(i), x(i)| Z(i = 1),2(i — 1)) P(Z(i — 1), x(i — 1))

o(i—1)=1

K
= > PG), w()]ali - 1)P(Z(i - 1), 2(i - 1))

z(i—1)=1
K
= P(a()a(@) Y Pila()|a(i-1)P(Z(i - 1), x(i 1))
—1)

The recursion is initiated with P(z(0),2(0)) = Py(x(0))P,(2(0)|x(0)). The prob-
ability P(Z(7)) can be retrieved from P(Z(i), x(4)) by

N

K
P(Z(1)) = Z P(Z (1), (i)). (4.6)
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A pseudo-code description of this algorithm is given by algorithm 1. The forward

K
algorithm uses the array F(i, z(i)) = Z P(Z(i), (7)) to implement the recursion
z(i)=1
given by equation (4.6). The computational complexity for 7 time steps is proportional
to (i + 1)K2.

Algorithm 1 The Forward Algorithm
Step 1: Initialization (i = 0)
F(0, (0)) = Py(x(0))P,(2(0)|z(0)) for z(0) =1,...., K

Step 2: Recursion
for i=1to I do
for k=1 to K do

K
F(i, x(i)) = P.(2(i)| 2(i)) Z F(i—1,z(z — 1)) P(2(i)| z(i — 1))
. z(i—1)=1
P(Z(i) = Z F(i, x(i))
end for o
end for

4.2.2 Backward Algorithm

The offline processing allows for the calculation of the posterior probability P(x(#)|Z(I))
and determines the individually most likely states as

(1) = argmax{P(a(i) = wel Z(1)}. (4.7)

minimizing the error probabilities of the individual states.

The common probabilities P(x (i), Z(4)) are calculated by the forward algorithm.
The backward algorithm calculates the probabilities P(z(i + 1), ..., z(I)|z(é)). Dur-
ing each recursion step of the algorithm, the probability P(z(j),...,z(I)|z(j — 1)) is
recursively derived from P(z(j + 1),...,2(I)|z(5)) as

K
P0G, 2(Dla(i=1) = 3 Pie()e(i=1)Puz() 2 () P((i4+1)s s 2(D(5)).
z(j)=1
(4.8)
The backward algorithm starts with 7 = I, and proceeds backwards in time
until j = 7 + 1. Initialization of the procedure is done by declaring non exist-

ing probabilities P(z(I + 1)|x(I)) equal to 1. The availability of P(x(4), Z(i)) and
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P(z(i+1), ...,z(I)|z(i)) probabilities suffices for the calculation of the posterior prob-
ability as

Ple())| 2(1) =

P(Z(1))
PG+ D), e (D), Z6)P(), Z(0)
PUA(D))
_ Pz(i+1),...,2(D)|z()P(x(2), Z(3))
- P(2(1)) (49)

and its maximization by (4.7). A pseudo-code description of this algorithm is given
by algorithm 2. The computational complexity of the forward-backward algorithm is
of the order of (I +1)K?2.

Algorithm 2 The Forward-Backward Algorithm

Step 1: Forward step
Calculate F(i, k), i = 0,....,1, k = 1,...K by the forward algorithm as
described in Algorithm 1

Step 2: Backward algorithm: Initialization
B(I,k)y=1,k=1,..,.K

Step 3: Backward algorithm: Recursion
for i=1—-1by —1to0do
for z(i) =1 to K do

K
B(i,z(i)) = Z P(z(i)|z(i4+1))P.(2(i+1)|x(i+1))B(i+1,2(i+1))
end for e
end for

Step 4: MAP estimation
Zpap(i|ll) = argmax{B(i, k)F (i, k)}

=1,..,

4.2.3 Viterbi Algorithm

In the process of estimation, the Viterbi algorithm finds the most likely state sequence.
The solution maximizes the overall posterior probability:

#0), ... 7(I) = arg max {P(2(0),...,z(1))|Z(I)} . (4.10)
z(0),...,x(I)
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The computation of this most likely state sequence is performed efficiently by means of
a recursion that proceeds forward in time. Taking into account the Markov condition
and the memoryless property, the result is obtained by maximization of the common
probability over states of the sequence

ﬂoﬁfl.?i(i) {P(z(0),...,z(i),z(i + 1), Z(t1 + 1))} = (4.11)

=P.(z(i + 1)|z(i + 1))r£1(£g< {Pt(z’(i + 1)|x(2)) - oy max. {P(z(0),...,z(i — 1), z(4), Z(z))}}

The value of z(i) that maximizes P(x(0),...,z(¢), (i + 1), Z(i + 1)) is a function
of z(i + 1):
Z(ilz(i + 1)) = arg max {Pt(x(i + 1)|z(7))

(%)

z(o)ﬁl.,az)éifl) {P(z(0),...,xz(i — 1), z(2), Z(z))}} (4.12)

The Viterbi algorithm uses the recursive equation in (4.11) and the corresponding
optimal state dependency expressed in (4.12) to find the optimal path. A pseudo-code
description of this algorithm is given by algorithm 3. The computational complexity
of the Viterbi algorithm is comparable to that of the forward algorithm and of the
order of (I +1)/K?2.

4.2.4 Particle Filtering

Estimation of the posterior probabilities or filtering distribution can be achieved using
the standard filtering recursions via the Chapman-Kolmogorov equation

p(z(i+1)] Z(i) = /p(w(i)l Z (i) (i + 1) (i) da (i) (4.13)
and via Bayes rule for the prior update

(z(i+ D[ =i+ 1))p(z(i + D] Z(0))
p(z(i +1)[ Z(2)) '

One of the approximation strategies is that of sequential Monte Carlo methods, known
as particle filters. Within the particle filter framework, the filtering distribution is
approximated with an empirical distribution formed of the point of masses, or particles
[60], so the posterior probability distribution is given by the particle approximation
as

pla(i+1)| Z(i+1)) = (4.14)

NTJ
PEDIZ(0) = 37w ((0) = 2 () (4.15)
n=1
where §(-) is the Dirac delta function, NN, is number of particles and the normalized
importance weights w§f‘,10,m are chosen as

Np
w™ = p(z(%)] :cgn)) and Z wl(jlrzorm =1, wgzzm,m > 0. (4.16)
n=1
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Algorithm 3 The Viterbi Algorithm
Step 1: Initialization (i = 0)
for z(0) =1,..., K do
Q(0,2(0)) = Fo((0)) Pz (2(0)|(0))
R(0,2(0)) =0

end for

Step 2: Recursion
for i =2to I do
for z(i) =1 to K do

QG.2(9) = max {QG — Lo ~ DA()la(i - 1)} P ()
R 2(0) = masx {Qi —1,2(i ~ DP((i)la(i ~ 1))}

end for
end for

Step 3: Termination
P = rr1(6}§<{Q(I,:v(I))}

#(1|1) = argmax {Q(, (1))}
z(I)

Step 4: Backtracking

for i=1—-1by —1to0do
z(i|I) =R+ 1,2(i+1,1))

end for

The number of particles N, should be sufficiently large in order to properly represent
the posterior distribution by means of a set of samples. For the purpose of comparison
with the forward algorithm, the state estimation is performed by the MAP criterion.
The processing time and number of operation necessary for particle filtering is directly
proportional to I - N, . A pseudo-code description of the particle filtering is given by
algorithm 4.

4.2.5 Smoothing

Smoothing can be performed recursively backward in time using the smoothing for-
mula
- : L p(@(@)| Z(0))pe (i +1)| x(4))
p(x(2)|Z (i :/p:cz+1 AQ - -
(=(0)|Z (1)) (i + 1] Z(7)) @+ DI 20))
Smoothing is applied in addition to particle filtering to generate the realizations of the
entire smoothing density p(X(i)| Z(4)) based on the forward particle filtering results.

de(i+1)  (4.17)



CHAPTER 4. COMPARISON OF PROBABILISTIC ALGORITHMS
48 BASED ON HIDDEN MARKOV MODELS FOR STATE ESTIMATION

Algorithm 4 The Particle Filter

Step 1: Initialization (i = 0)
(n)

i

Draw N, samples x

p(x(0))

,n = 1,..,N,, from the prior probability density

Step 2: Update using importance sampling

Set the importance weights values: wgn) = p(z(7)| xz(n))
(n)
Calculate the normalized importance weights: wZ(’;LL)OTm = Sw%
) w;

Step 3: Resample by selection
Calculate the cumulative weights w((;:f?)n = Wnorm
for n =1to N, do

Generate a random number r uniformly distributed in [0, 1]

Find the smallest j such that wﬁ{)m > p(n)
(n) ()

Select Xz’,selected =X

end for

Step 4: Predict
Seti=i+1
for n =1to N, do
Draw sample from the density p(x(i)|x(i — 1) = =
end for

(n)

i, selected

Step 5: Go to step 2

A pseudo-code description of particle smoothing is given by algorithm 5, [60].

4.3 Experiments and Discussion

We defined the probabilistic framework for stereo matching using HMMs in Section
3.2. The state transition probabilities represent the assumed change of the dispar-
ity along the epipolar line. However, the observation probabilities are not known,
so we used the likelihood function instead. In order to gain the insight into a per-
formance of different probabilistic algorithms when the observation probabilities are
known, we now perform experiments on random generated sequence with known state
transition probabilities and known observation probabilities. We chose the transition
probabilities in the manner described in Chapter 3.

First, we set up a number of experiments on randomly generated state sequence
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Algorithm 5 Smoothing Algorithm

Step 1: Particle filter
Perform a forward sweep of particle filtering described in algorithm 4, gen-

(2

erating weighted particles {azgn), w("), t=1,...,I,n=1,.., Np}

Step 2: Initialization {%3171)7 ﬁgm), m=1,..M
Generate M random numbers n,, € [1,N,] of multinomial distribution
given by wgn), n = 1,..., N, so that Egm) = xgnm) and {Dyn) = wgnm)

L smooth (I) = E[ig‘m)]

, set

Step 3: Recursion
fori=1—1by —1to0do

Calculate w™™ = w§")pt(5§T1)Ix

(n)
ili+l i)

, for¥n,m

Chose {?ﬁgm), @Em), m= 1,...,M} by generating M random numbers

(m,n)

Nm € [1,Np] of multinomial distribution given by Wit =
—1,.

1,..,Np, m M

xsmooth(i) = E[E;Em)]

end for

using HMMs with known state transition probabilities and known observation proba-
bilities. We investigated the influence on the performance of algorithms when observa-
tion probabilities are identical or when they differ from transition state probabilities.
We performed state estimation using different probabilistic algorithms and compared
their performance. We defined the algorithm performance through a success estima-
tion rate, i.e. the ratio between the number of correctly estimated states and the
total number of states that had to be estimated. Second, we applied HMM to esti-
mation of a disparity map of a stereo pair and compare the estimated disparity maps
with respect to the dynamic programming (DP) result. We have introduced dynamic
programming in Section 3.4.

The objective of the experiments was to compare the rate of successful state
estimation of the HMM sequence when using different algorithms. The measurement
sequences of the length I = 1000 were generated from several different HMMs with
known state sequence for the quality assessment of the estimation. We specifically
chose the state-space model in order to allow for all state transitions, supporting more
small changes of the states variable, but allowing for greater changes, but with small
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probabilities, as well. We conducted four experiments with number of states K = 40
in experiment 1, and with number of states K = 100 in experiments 2, 3, 4 and 5.

The transition probabilities are given in the form of AxK matrix whose ele-
ment in the m*" row and n** column is the transition probability Pi(z(i + 1) =
n|z(i) = m). The sum of all transition probabilities for a fixed state x(7) is equal to
1, Zf(iﬂ):l Pi(xz(i + 1)|z(i)) = 1. The discrete state variable z(i) can take values
from the set Q = {1, 2, ..., K} and the measurements z(i) can take their value from
the same set of values i.e. Z = ). The initial probability, at time instant i = 0,
is taken as Py(z(0)) = Pi(x(1)|x(0) = 1). The probability that the state variable
changes its value in the next time instant is inversely proportional to the absolute dif-
ference of the consecutive state values. The state variable has the highest probability
of keeping the same value and that probability is the same for all states. The proba-
bility linearly decreases with absolute discrepancy of the consecutive variable values
up to transmax:. The probability P; j,mp that the absolute discrepancy between two
state-variable values lies in the range of [transmaz:, jumpmax;] is constant and low
e.g. in experiment 1, P, jump = 0.1, while the probability P; ouiier that the abso-
lute discrepancy between two consecutive values of the state variable is higher than
Jjumpmaz, is constant and very low e.g. in experiment 1, P; oy1ier = 0.05. Figure 4.1
illustrates the shape of the transition probability P;(z(i + 1)|z(i) = 30). The gener-
ating formula for transition probabilities, and observation probabilities, probabilities
is

(1=P; outtier — Pt jump) - (1+tms—|x;—x;])
Ttm, +350,08 20r b,
) — b jump . ; o i
Py(xi|xj) eIl if tmy <z, — x| < jmy
t,outlier

K—1—2jmy

if 0< |z — ;| <tmy

otherwise
(4.18)
where jm; stands for jumpmaz; and tm; stands for transmax;.

The likelihood function, or observation probability, is defined by a matrix P,.
In experiment 1, 2, and 3, P, is taken to be equal to their corresponding matrix
P,. The matrix element P,(z(i) = n|z(i) = m) is the likelihood that the state at
time i, x(i) = m, yields measurement z(i) = n. In experiment 4, the influence of
the outliers to the estimation success rate is examined and we vary the probability
P, outiier parameter in the observation matrix. In experiment 5, the influence of the
different observation probabilities for the fixed transition probabilities is considered
and we vary parameter transmax,. The overview of the parameters of P; and P, is
given in table 4.1.

In each experiment, we generate a random sequence using a random number gen-
erator and a transition probability matrix P;. Then, we estimate the sequence by five
probabilistic algorithms using a observation probability matrix P,. The probabilistic
algorithms used for the state estimation are: the forward algorithm, the forward-
backward-algorithm, the Viterbi algorithm, the particle filter and the particle filter
with smoother. We also investigate the influence of the number of particles used in
the particle filter, IV, and the number of particles used in particle smoother, M, to
the estimation success rate.
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0.18f b

0.16f b
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=30)

P (x(+1)Ix(0)
o
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0.04 b
0.02 B
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x(i+1)
Figure 4.1 Py(z(i + 1)[z(i) = 30) of HMM in experiment 1 with
transmax; = 4, jumpmazy = 8, Pt jump = 0.1 and P; pypiier = 0.05, P, = P
P, P,
K | transmax; | jumpmazi | Py jump P outtier transmazx, | jumpmaz; | P.jump P, outlier
exp. 1 | 40 4 8 0.1 0.05 4 8 0.1 0.05
exp. 2 | 100 4 8 0.1 0.05 4 8 0.1 0.05
exp. 3 | 100 2 4 0.1 0.05 2 4 0.1 0.05
exp. 4 | 100 2 1 0.1 0.01 -k 2 1 0.1 1 Prouttior
k=0,1,2,..,15 n=1246,8
exp. 5 | 100 2 4 0.1 0.05 l 4 0.1 0.05
1=2,3,..,10
Table 4.1 HMMs used in experiments
N,= 2500
0.5¢ ' ‘ —e—P‘anicIe filter | | 03 ‘ ‘ —e—PF+smuutm‘ng I
0451 ——Forward alg. | | 0.45- :\ljﬁre\?'/;rd-hackward H
0.4 0.4f
% 0.35F % 0.35 1
% 0.3F g 03 —
? %025 ————
S = ,//
£ g o ]
8 8 0.5} —
01
0.05}
o 0 ‘l ‘2 ‘3
10 10 10 10
M

Figure 4.2 Experiment 1: Success rate of estimation
Forward algorithm versus particle filtering; Forward-backward algorithm
versus particle filtering with smoothing
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Figure 4.3 Experiment 2: Success rate of estimation
Forward algorithm versus particle filtering; Forward-backward algorithm
versus particle filtering with smoothing
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Figure 4.4 Experiment 3: Success rate of estimation
Forward algorithm versus particle filtering; Forward-backward algorithm
versus particle filtering with smoothing
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In experiment 1, the number of states in the HMM is K = 40 and the transition
and the observation probability matrix are identical. The results are shown in figure
4.2. The graphs show that the success rate of state estimation by particle filter as
the number of used particle is increased asymptotically reaches the rate obtained
by the forward algorithm. The smoothing applied after particle filter with N, =
2500, improves the estimation success rate and reaches that of the forward-backward
algorithm when the number of particles for smoothing is M = 10. Increasing the
number of particles involved in smoothing M, leads to further increase of the successful
estimation rate.

Experiment 2 is equivalent to experiment 1, with the difference that the number
of states in the HMM is K = 100. The conclusions are the same as for the estimation
success rates. The results are shown in figure 4.3.

In experiment 3, the number of states in the HMM is K = 100 as in experiment
2, but we have changed the value of jumpmazx; and jumpmaz, from 8 to 4. The
result is a twofold increase of the estimation success rate compared to the rates in
experiment 2. The results of experiment 3 are shown in figure 4.4.

In experiment 4, we investigate the influence of the outlier probabilities P outiier
and P, outiier On the estimation success rate. The parameters transmazxy,, = 2 and
Jumpmax,,, = 6 with P/, jump = 0.1 are kept constant. The number of symbols
was K = 100. The probability P,ytiier varies from 0 to 0.15 in 0.01 increments, for
the cases when the observation matrix P, is the same as the transition matrix P; and
when the P, ,yuuer Of the observation matrix P, is 2, 4, 6 and 8 times greater than
the outlier probability of the transition matrix P oyt1ier. The number of particles
used in the particle filter and smoother were N, = 100 and M = 100. The results are
illustrated in figures 4.5, 4.6, 4.7, 4.8 and 4.9. With the increase of the P,,;er, the
estimation success rate decreases approximately linearly and the decrease is steeper
for the higher values of P, oysier. The relative difference between the success rate of
different algorithms was preserved, except for the particle filtering with smoothing
algorithm, which means room for improvement by choosing a different smoothing
procedure.

Experiment 5 illustrates the influence of the measurement probability by increas-
ing the transmazx, value, while transmax; is held constant. From the figure 4.10, we
see that as the difference between the likelihood function and the appropriate transi-
tion probability transmaz, parameter increases, the success estimation rate becomes
lower.

To get an overview of the estimation success rates for different probabilistic algo-
rithms across experiments, we compared representative cases of different experiments
in Table 4.2. It can be seen that the best estimation success rates are obtained in
experiment 4 with the Viterbi algorithm and the particle filter followed by smoothing.
The results show that the estimation success rate highly depends on the parameters
of observation probability.

In the next experiment, we estimate the disparity map of a rectified stereo pair,
as shown in Figure 4.11, using the five probabilistic algorithms. The ground truth
disparity map is not known, so we compared the results by reference to the dispar-
ity map calculated by dynamic programming. The observation probabilities are not
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\ | Fw [FwBw [ Vit [ PF [PF+S [k [l [n|
exp. 1[025] 025 [026]024] 025 [-]-]-
exp. 2 [ 026 026 | 026023 025 |-|-[-
exp. 3051 057 |0.55]0.50] 054 |- -

exp. 4 054 [ 058 |0.62]054] 061 [2]-]2
exp. 5 [ 049 055 | 0.56 049 | 052 |- |2 -

Table 4.2  Experiments comparison: Success estimation rate

known either, so we used the cost and likelihood instead. In DP, the cost function
is calculated by using the normalized crosscorrelation of the corresponding windows
with the size 31x31 (for a detailed description see Section 3.4). A likelihood function
for probabilistic algorithms is also calculated using the normalized crosscorrelation
coefficients as in Section 3.4.

The scene in stereo images in figure 4.11 is complex from a disparity estimation
point of view: the perspectives in images differ significantly and some scene parts
appear in only one image, namely occluded scene parts. However, our probabilistic
stereo framework does not model occlusion. The disparity range is 141. For all
probabilistic algorithms, an HMM model is used with the number of states K = 141
equal to the disparity range and an arbitrarily chosen transition probability matrix
Pt as to allow for continuous disparity change and as well as for jumps in disparity.
The parameters of P, are P, ouiier = 0.05, P, jump = 0.1, transmaz, = 4 and
jumpmazx, = 2.

In Figure 4.12, we show the estimated disparity maps of stereo images from Figure
4.11 using DP and the five probabilistic algorithm. In Table 4.3, we quantitatively
compare the disparity maps as estimated by the probabilistic algorithms to the dis-
parity map as estimated by DP. For all probabilistic algorithms, the percentages of
the recovered disparity values which are identical to the DP disparities are given in
column g, while columns (); and ()5 show the percentages of the recovered dispar-
ities within the range of =1 and #2 of the DP disparities. Based on the numbers
from the table, we conclude that the Viterbi algorithm gives the results that are the
most comparable to the DP result. However, the results of the particle filter and the
particle filter followed with smoother are rather low. This can be explained by the
discrepancy of the HMM used, as it does not represent the dynamics of the scene
accurately. Particle filter is capable of incorporating more complex prior models, but
on the other hand is less robust and more prone to errors if the prior is not properly
chosen. As other cause of the low particle filter performance could be the choice of
the likelihood function, which does not take into account the complexity of the scene
and occlusion.

4.4 Concluding remarks

State estimation of sequences of different hidden Markov models has been conducted
by the forward algorithm, the forward-backward algorithm, the Viterbi algorithm,



4.4. Concluding remarks 57

Figure 4.11 Stereo pair: left and right images

[ Algorithm | Qo[%] | Qu[%] | Qu[%] | Qs[%] |

Forward 55 79 85 90
Forward-Backward 57 85 91 94
Viterbi 73 91 94 95
Particle Filter 33 65 77 86
PF+Ssmoothing 29 56 67 76

Table 4.3 Quality comparison of estimated disparity maps by probabilistic
algorithms to disparity map estimated using dynamic programming

particle filtering and the particle filtering followed by smoothing. We compared the
success rate of estimation by the forward algorithm against the rate obtained by par-
ticle filtering, and the results of forward-backward and Viterbi algorithms against the
particle filtering followed by smoothing result. We showed that particle filtering with
an increase of the number of particles asymptotically has the same performance as the
forward algorithm. As expected, the smoothing improves the correct estimation rate
and already when using M = 10 particles reaches the quality of the result obtained
by the forward-backward algorithm. Also, the influence of the increased outlier prob-
ability and the increased transmax, parameter of the observation function on the
success estimation rate has been investigated, and we observed that the estimation
rate decreases with an increase of those parameters.

We also demonstrated the disparity estimation using HMM and the five proba-
bilistic algorithms. We compared the results with the DP result as the reference. The
disparity map obtained by the Viterbi algorithm proved to be comparable in quality
to DP. However, the particle filter and smoother did not achieve estimation quality
comparable to the DP result. This can be explained by the scene complexity and the
HMM used, which does not completely represent the scene statistics.

There are two possible directions of improvement. One is the use of more complex
prior model than HMM, such as two-dimensional Markov random fields, and the other
is improvement of the likelihood function.
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Figure 4.12 Estimated disparity maps



A New Likelihood Function for Stereo
Matching - How to Achieve Invariance to
Unknown Texture, Gains and Offsets? !

We introduce a new likelihood function for window-based stereo matching. This
likelihood can cope with unknown textures, uncertain gain factors, uncertain offsets,
and correlated noise. The method can be fine-tuned to the uncertainty ranges of the
gains and offsets, rather than a full, blunt normalization as in NCC (normalized cross
correlation). The likelihood is based on a sound probabilistic model. As such it can
be directly used within a probabilistic framework. We demonstrate this by embedding
the likelihood in a HMM (hidden Markov model) formulation of the 3D reconstruction
problem, and applying this to a test scene. We compare the reconstruction results
with the results when the similarity measure is the NCC, and we show that our
likelihood fits better within the probabilistic frame for stereo matching than NCC.

1S. Damjanovié, F. van der Heijden, and L. J. Spreeuwers, ”A new likelihood function
for stereo matching: how to achieve invariance to unknown texture, gains and offsets?”,
in VISIGRAPP 2009, International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, Lisboa, Portugal, pp. 603608, INSTICC Press,
February 2009
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5.1 Introduction

Stereo correspondence is the process of finding pairs of matching points in two images
that are generated by the same physical 3D surface in space, [2]. The classical ap-
proach is to consider image windows around two candidate points, and to evaluate a
similarity measure (or dissimilarity measure) between the pixels inside these windows.
Such an approach is based on the constant brightness assumption (CBA) stating that,
apart from noise, the image data in two matching windows are equal. If the noise is
white and additive, then the SSD measure (sum of squared differences), or the SAD
(sum of absolute differences) is appropriate. Often, the gains and offsets with which
the two images are acquired are not equal, and are not precisely known. Therefore,
another popular similarity measure is the NCC (normalized cross correlation) which
neutralizes these offsets and gains. An alternative is the mutual information, [63],
which is even invariant to a bijective mapping between the grey levels of the left and
right images.

In a probabilistic approach to stereo correspondence, the similarity measures be-
come likelihood functions being the probability density of the observed data given
the ground truth. For the application of stereo correspondence (and related to that
motion estimation) several models have been proposed for the development of the
likelihood function, but none of them consider the situation of uncertain gains and
offsets. In this paper, we introduce a new likelihood function in which the unknown
texture, and the uncertainties of gains and offsets are explicitly modelled.

The solution of stereo correspondence is often represented by a disparity map.
The disparity is the difference in position between two corresponding points. In the
classical approach, the disparity map is estimated point by point on an individual
base. Better results are obtained by raising additional constraints in the solution
space. For instance, neighbouring disparities should be smooth (except on the edge
of an occlusion), unique, and properly ordered. Context-dependent approaches, such
as dynamic programming [19] and graph-cut algorithms [64], embed these contextual
constraints by raising an optimization criterion that concerns a group of disparities at
once, rather than individual disparities. For that purpose, an optimization criterion
is defined that expresses both the compliance of a solution with the constraints, and
the degree of agreement with the observed image data.

The Bayesian approach has proved to be a sound base to formulate the optimiza-
tion problem on [19, 21]. Here, the optimization criterion is expressed in terms of
probability densities. A crucial role is the likelihood function, i.e. the conditional
probability density of the data given the disparities. Suppose that a given point has
a disparity x, and that for that particular point and disparity the pixels in the cor-
responding image windows are given by z; and zs. Then the likelihood function of
that point is by definition the pdf p(z1, z2|x).

The usual expression for this likelihood is again based on the CBA, and assumes
Gaussian, additive white noise. Application of this model leads to the following
likelihood:

1
p(z1,2z2|T) x exp - llz1 — ZQ||2 (5.1)
402
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Here, ||z; — 22” is the SSD. The likelihood function in eq. (5.1) is a monotonically
decreasing function of the SSD. It is used by [19] and [21] albeit that both have an
additional provision for occluded pixels. However, the function is inappropriate if
the gains and offsets are uncertain. Yet, the differences between the grey levels in
two corresponding windows is often more affected by differences in gains and offsets
than by noise. This paper introduces new expressions which do include these effects.
The NCC and the mutual information similarity measures are also invariant to these
nuisance factors. However, these measures are parameters derived from the pdfs.
But in a true probabilistic approach we really need the pdfs themselves, and not just
parameters.

The paper is organized as follows. Section 2 introduces the new likelihood func-
tion. Here, a probabilistic model is formulated that explicitly describes the existence
of an unknown texture, and uncertain gains and offsets. The final likelihood is ob-
tained by marginalization of these factors. Section 3 analyses the expression that is
found for the likelihood. In Section 4, we present some experimental results where
the likelihood function is used within a HMM framework. A comparison is made
between the newly derived likelihood and the NCC when used in a forward /backward
algorithm. Section 5 gives concluding remarks and further directions.

5.2 The Likelihood of two corresponding points

We consider two corresponding points with disparity x. The image data within two
windows that surround the two points are represented by z; and z,. The grey levels
(or colours) within the windows depend on the texture and radiometric properties of
the observed surface patch, but also on the illumination of the surface, and on the
properties of the imaging device. We model this by:

Zi = as + ng + Ore k=1,2 (5.2)

Here, s is the result of mapping the texture on the surface to the two image planes.
According to the CBA, this mapping yields identical results in the two images. g
are the gain factors of the two imaging devices. [ are the offsets. e is the all 1
vector. ny are noise vectors. We assume Gaussian noise with covariance matrix C,.
Furthermore, we assume that n; is not correlated with ns.

Strictly speaking, the CBA can only hold for fronto-parallel planar surface patches.
In all other cases the local geometry of the surface around a point of interest is mapped
differently to the two image planes. Thus, the texture on the surface will be observed
differently in the images. This problem becomes more distinct as the size of the win-
dow increases. The problem can be solved by backmapping the image data within
the two windows to the 3D surface before applying the similarity measure, [65]. In
the sequel, we will assume that either such a geometric correction has taken place, or
that the windows are so small that the aperture problem can be neglected.

In order to get the expression for the likelihood function we marginalize the pdf of
z1 and zo with respect to the unknown texture s. Next, we marginalize the resulting
expression with respect to the gains a. The offsets can be dealt with by regarding
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n; + Ore as one additive noise term. Thus, a redefinition of C,, suffices. This will be
looked upon in more detail in Section 5.2.3, but for the moment we can ignore the
existence of offsets.

5.2.1 Texture Marginalization

The likelihood function can be obtained by marginalization of the texture:

p(21, 70|, a1, ) = / p(21, 7o, 5, a1, an)p(s|)ds (5.3)

S

The pdf p(s|z) represents the prior pdf of the texture s. For simplicity, we assume a
full lack of prior knowledge, thus leading to a prior pdf which is constant within the
allowable range of z; and z,. This justifies the following simplification:

p(z1,22|x) = K/p(zl,zQ|x,s,a1,a2)ds (5.4)

S

K is a normalization constant that depends on the width of p(s). Any width will do as
long as p(s) covers the range of interest of z; and zy. Therefore, K is undetermined.
This is not really a limitation since K does not depend on z, z; or zs.

With s fixed, z; and z9 are two uncorrelated, normal distributed random vectors
with mean s, and covariance matrix C,. Therefore p(z1,za|z, a1, a2) = G(z1 —
018)G(z2 —ags), where G(+) is a Gaussian distribution with zero mean and covariance
matrix C,,. This expression can be further simplified by the introduction of two
auxiliary variables: h = %L —s and y = %L — 22 g0 that h —y = 22 —s. The

g Qo a2
likelihood function can be obtained by substitution:

(21, 22|z, a1, ) = K/hG(alh)G(ag(hfy))dh

and by rewriting this in the Gaussian form:

p(2z1,2Z2|2, 01, z) o
1 _ ((1221—(}1Z2)Tcn71(a2zl_a1z2)) (55)

X
\/a%—i-a% p Q(Q%Jﬂlg)

Note that for a; = ag = 1 and C,, = 021 the likelihood simplifies to eq. (5.1). The
resulting likelihood function is the same as in [19, 21] although the models on which
the expression is based differ.

5.2.2 Marginalization of the Gains

In order to neutralize the unknown gains we marginalize over a; and as:

(21, z2|x) ://p(zl,ZQ\x,al,OzQ)p(ozl)p(ag)dozgdal (5.6)

a1 o2
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The prior pdfs p(ay) should reflect the prior knowledge about the gains ay. Usually,
the gain factors do not deviate too much from 1. For that reason, we chose for p(ayx)
a normal distribution, centred around 1, and with standard deviations o,. In order
to make the analytical integration of eq. (5.5) possible, we approximate the term
1/(a? + a2) by its value at aj, = 1, that is % This approximation is rough, but not
too rough. For ay, < 1, the factor 1/(a? + a3) is underestimated, but for oy > 1 it is
overestimated. Since the integration takes place on both side of oy = 1, the error is
partly compensated for.

Under the assumption ay ~ N(1,04), the approximation leads to the following
result:

exp (— o2 (p11p22—p3s)+p11+p22—2p12
ol (p11p22—p32)+202 (p11+p22)+4

p(z1, z2|T) ox (5.7)
Vod(pripza — pla) + 202 (p11 + paz) +4
where:
pre =21 Crlzy with: k0=1,2 (5.8)
In the limiting case, as o, — 0, we have
p(z1, Za|z) o exp (= (p11 + paz — 2p12)) (5.9)

which coincides with eq. (5.1). Intuitively, this is correct since the uncertainties about
aq and g is zero then. In the other limiting case, as o, — 00, the likelihood becomes:

1

p(71,72]7) ¢ —
V P11P22 — P2

We will analyse these expressions further in Section 3.

(5.10)

5.2.3 Neutralizing the Unknown Offsets

We assume that the offsets 8y have a normal distribution with zero mean, and stan-
dard deviation og. The vectors (e have a covariance matrix U%eeT. Since the
random vectors are additive, we may absorb them in the noise vectors ny. Effectively
this implies that the covariance matrix C, now becomes C,, + UéeeT. Consequently,

the variable pge in eq. (5.8) should be redefined by pie = z;‘g(Cn + J%eeT)*lz[ This

can be rewritten in: Ny
pre = zF (Z vnA;1v§> z0 (5.11)

n=1
An, are the eigenvalues of the covariance matrix. v,, are the corresponding eigenvectors.
Suppose that NV 0% is large relative to all other eigenvalues of C,, (N is the dimension

of zg). In case of white noise, the equivalent assumption is N 0% > 02 ). Then

one of the eigenvalues of C,, + UgeeT

is close to N 0’%, while all other eigenvalues
are considerably smaller. The eigenvector that corresponds to 0’% is close to e. The

contribution of this particular eigenvalue/eigenvector to pge in eq. (5.11) is about:

T oo
z.ee" zZy

el (5.12)
NO’B
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The limit case, g — oo, represents the situation of full lack of prior knowledge of
the offsets. In this circumstance, the approximations above become exact. Thus, the
full contribution in eq. (5.12 ) becomes zero.
There is no need to embed U%eeT in C,. The factor zfe is the projection of
z;, on e. We just need to remove this projection from zj beforehand, and then its
contribution is zero anyhow. This can be obtained by subtracting the average of the
elements of the vector. Thus, if Zj is the average of the elements of the vector zj,
then:
Pkt = (Zk — Eke)TCI:l(Zg — Ege) (513)

Note that this approach to cope with unknown offsets is equivalent to the normaliza-
tion of the mean, just as in the NCC procedure.

5.3 Likelihood Analysis

In this section, we examine the behaviour of the proposed likelihood in different
circumstances. For simplicity, we consider only the white noise case, C,, = o21. First
we examine the behaviour of the likelihood function under the null hypothesis with
varying ;. Other parameters are kept constant. Substitution of eq. (5.2) in eq. (5.8)
yields:

Prk = (aisTs + 20,8 0y + ngnk)/cr?l

P12 = (aloé2STS + alsTnl + CVQSTIIQ + Il’{ng)/()'% (514)

We regard s as a nonrandom signal. The energy o is defined as 02 = s”s/N. We
examine the behaviour by replacing the inner products in eq. (5.14) by their root
mean squares. That is:

sTn, ~ 4 /E {(sTnk)Q} =+/Noso,
nin; ~,/E [(nznk)z] = VN2 +2No? (5.15)

nfn, ~ | /E |:(Il,{l'12)2:| =+/No?

Figure 5.1 shows the likelihood function p(z1, z2|z) for o, = 0o, conform eq. (5.10),
and for o, = 0.1, conform eq. (5.7) for varying a;. Of course, a substitution by
RMSs is not exact, but nevertheless, the resulting figure gives a good impression of
the behaviour. As expected, if o, is very large, the likelihood function covers a wide
range of . If o, is small, then the function is narrowly peaked around a; = 1.

In order to check whether the new likelihood function is able to distinguish be-
tween similar textures and dissimilar textures, we also examined the ratio of the like-
lihood function under these two different cases. For that purpose, we also considered
the alternative model:

Z, = aiSk + ng + e k=1,2 (516)
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normalized likelihood
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Figure 5.1 The likelihood function with varying «y. Other parameters are:
as=1,0,=1, N =225

likelihood ratio

a) 0 =, 0 =10
o s

100 0,=0.5, 0,=50]
) \

1 100 N 10000

Figure 5.2 The likelihood ratio with varying N. Other parameters are:
alzl,a2:1,0'n:1

In this situation, s; and sy are two different textures, but with the same signal energy
0. If we model s; and s; as realizations from two independent random signals, then
E[(sTs2)?]'/? = 62V/N. Thus, if the textures are dissimilar, the RMS of the factor s”'s
in p12 in eq. (5.14) should be replaced accordingly. The ratio between the likelihoods
in the two cases is:

imilar text
A2y, 2) = p (21, Z2|z, similar textures)

p (21, z2 |7, dissimilar textures) (5.17)
Figure 5.2 shows this ratio for varying N. We see that the ratio’s with o, = 0.5 are
always larger than the one with o, = oo, but for large N the ratio’s with o, = 0.5
approaches the other one and becomes constant on the long run. The reason for
this typical behaviour is that in the factor pijpa2 — p?5 the contribution of the signal
a1ass?'s is cancelled out, while the contribution of the noise, i.e. n} ny, is proportional
to IV, and thus keeps growing as N increases.

5.4 Experiments

A preliminary experiment is conducted to demonstrate the abilities of our newly
proposed likelihood. For that purpose, two rectified stereo images were selected.
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Figure 5.3 Stereo pair Bowlingl from [6] : (a) left image, (b) right image,
and (c) ground truth disparity

(b) ()

Figure 5.4 Reconstructed depth maps.: (a) the new likelihood function, (b)
NCC based likelihood, and (c¢) SSD based likelihood

See Figure 5.3. In order to embed the likelihood function within a probabilistic
framework, we treat the stereo correspondence along the epipolar line as a state
estimation problem using a HMM (Hidden Markov Model). The reconstruction is
done using the FwBw (forward-backward) algorithm [55]. The Viterbi algorithm is
also applicable, but in our experiments, FwBw outperformed Viterbi. We calculated
the disparity map using the new likelihood function as the observation probability,
and compared this map with a map obtained from the same HMM, but with an other
likelihood function plugged in.

5.4.1 The Hidden Markov Model

Each row of the left image is considered as a HMM. Thus, the running variable is the
row index ¢. The state variable of the HMM is taken to be the disparity x;. The set of
allowable states is: z; € Q = {Knin -y Kmaz}- Kmin and Kpq, are the minimum
and the maximum disparities between the two images. The number of different states
is K = Kyae — Kpin + 1. The transition probabilities between consecutive states are
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given by the transition probability P;(z;+1 = n|z; = m).

The disparity z; along an image row is a piecewise continuous function of i.
Sudden jumps are caused by occlusions and boundaries between adjacent objects of
different depth in the scene, but for the remaining part the depth tends to be smooth.
We can model this prior knowledge by selecting P;(x;+1 = n|z; = m) such that the
next state x;;1 is likely to be close to the current state x;. The variable has the
highest probability to stay in the same state. The probability should decrease as the
absolute difference A = |z;41 — ;| increases. However, the probability should also
allow the large jumps that are caused by occlusions and object boundaries.

In our experiments, P; consists of two modes. Large jumps are modelled with an
overall probability P,yier uniformly distributed over the range z; — Jymaz, -+ , 2 +
Jmaz- In this mode, each state within this range is reached with a probability
Poutiier/(2Jmaz + 1). Inliers are modelled with an overall probability of 1 — Poytiier-
Here, the transition probability linearly decreases with A up to where A is larger
than a threshold T,,4.. We chose P,yiier = 0.05, Jpmae = 8, and Tj,4. = 3. Note,
however, that the choice of P; could be refined by, for instance, using the uniqueness
constraint on the disparities [2].

5.4.2 Reconstruction

The selected rectified stereo pair is shown in Figure 5.3. These images are taken from
[33]. The scene, "bowling1’, is chosen because our intention is to apply the algorithm
for the reconstruction of textureless and smooth surfaces so that later the application
can be extended to the 3D reconstruction of faces. The minimum and maximum
disparities of these images are K,,;, = 374 and K,,,, = 446, which means that the
state-space model has K = 73 states.

The reconstruction is done by applying the forward-backward algorithm to an
HMM with the transition probability described above and with the observation prob-
ability given by eq. (5.7). For the calculation of the likelihood expression, we consider
that the noise variance is o2 = 0.05, the gain variances 02, = o2; = 0.25. We per-
formed the calculations on the pixels within 31x31 windows. Thus, N = 961.

The reconstruction is also performed using the NCC as similarity measure. Since
this measure is not a probability density, it possibly should undergo a rescaling to
make it more suitable for a substitute of the observation probability. After some
experimentation, we found that the following mapping of the NCC

(3 1+ nNce)) (5.18)

is a suitable choice. The best reconstruction was obtained with v = 6. We applied
this expression within a HMM with the transition probability described above. The
windows that were used are also 31x31.

5.4.3 Results

The reconstructed disparity maps are shown in Figure 5.4. A comparison with the
ground truth (Figure 5.3) shows that the reconstruction based on the new likelihood
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function is more accurate and more robust than the one based on the NCC measure.
The new likelihood expression is better able to deal with, especially, the steplike
transitions due to occlusion. The NCC-based result is oversmoothed, and cannot
locate this transitions accurately. Note that the large error on the right-hand side of
the disparity maps are caused by missing data in the left image.

5.5 Conclusion

We have found an expression for a likelihood function that can cope with unknown
textures, uncertain gain factors and uncertain offsets. In contrast to the classical
approaches this likelihood is not based on some arbitrary selected heuristics, but on a
sound probabilistic model. As such it can be used within a probabilistic framework.
The likelihood can be fine-tuned by setting a limited range of allowable gain factors
rather than just any gain factor.

Using the model we were able to show that coping with unknown offsets can safely
be done by normalizing the means of the data, as done in other approaches such as
the normalized correlation coefficient. Unknown gain factors and unknown textures
are dealt with in a way that differs a lot from other approaches. Yet, the computa-
tional complexity of the proposed metric is quite comparable with, for instance, the
computational load of the NCC.

We demonstrated stereo reconstruction within the probabilistic framework by
the forward-backward algorithm with a suitably chosen HMM and showed that it
is a resourceful approach. We showed that the newly proposed likelihood is more
suitable for stereo reconstruction within the probabilistic framework than the NCC.
The reconstruction using the new likelihood deals better with occlusion, while the
NCC tends to oversmooth the area with greater abrupt change in depth.



Sparse Window Local Stereo Matching?

We propose a new local algorithm for dense stereo matching of gray images. This
algorithm is a hybrid of the pixel based and the window based matching approach and
uses a subset of pixels from the large window for matching. Our algorithm does not
suffer from the common pitfalls of the window based matching because it successfully
recovers disparities of the thin objects and preserves disparity discontinuities. The
only criterion for pixel selection is the intensity difference with the central pixel.
The subset contains only pixels which lay within a fixed threshold from the central
gray value. As a consequence of the fixed threshold, a low-textured windows will use a
larger percentage of pixels for matching, while textured windows can use just a few. In
this way, this approach also reduces the memory consumption. The cost is calculated
as the sum of squared differences normalized to the number of the used pixels. The
algorithm performance is demonstrated on the test images from the Middlebury stereo
evaluation framework.

1S. Damjanovic, F. van der Heijden, and L. J. Spreeuwers, ”Sparse window local stereo
matching”, VISIGRAPP 2011, pp. 689693, 2011
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Figure 6.1 Disparity results for the stereo pairs (1st row: Tsukuba, 2nd
row: Venus, 3rd row: Teddy, 4th row: Cones) from the Middlebury database.
From left to the right columns show: The left image, Ground truth, Result
computed by the sparse window matching technique, Disparity errors larger
than 1 pixel. The nonoccluded regions errors with ranking (January 2011)
are respectively: Tsukuba 2.82% (65), Venus 1.20% (67), Teddy 9.16% (68),
Cones 5.91% (75)

6.1 Introduction

Stereo matching has been a popular topic of research for almost four decades, ever
since one of the first papers appeared in 1979 [7]. A de facto evaluation framework for
objective comparison of different stereo algorithms has been established [4]. Stereo
algorithms can be classified into two categories: local and global. Although the global
algorithms are more sophisticated and achieve high accuracy, the local algorithms
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Figure 6.2 Disparity maps calculated by sparse window technique without
the offset compensation [the upper row| and their bad pixels maps [the lower
row]. The nonoccluded regions errors with ranking (January 2011) are re-
spectively: Tsukuba 2.53% (61), Venus 0.63% (47), Teddy 17.5% (99), Cones
13.8% (101)

are more present in the practical computer vision applications because of its low
computational load and efficient hardware implementation [42], [66], [67].

In local stereo matching, the cost is aggregated over a support window, which is
most often rectangular. It is inherently assumed that all pixels within the matching
window have the same disparity; whereas, the fronto-parallel assumption is not valid
for e.g. curved surfaces due to perspective distortion and occlusion. Therefore, the
window-based matching produces different artifacts in the final disparity map: the
discontinuities are smoothed and the disparity of the texture richer surfaces are prop-
agated into the lower textured areas [44]. Another limitation is the dimension of the
objects whose disparity can be successfully recovered; the object’s height and width
in the image should be at least half the size of the window dimensions in order to be
detected in the window matching. The idea that properly shaped support areas for
cost aggregation can result in better matching result exists in the literature [68], [66],
[69].

The ideal window for matching would be only one pixel; however, the one-pixel
window does not provide sufficiently discriminatory cost for the local stereo matching.
We introduce the hybrid support: a set of properly chosen pixels within the rectan-
gular window in order to combine the support of many pixels for cost aggregation as
in the window-based matching but not to be limited by the window dimension like in
the pixel-based matching. We use ”sparse window” in cost aggregation and the sum
of squared differences normalized to the number of pixels (nSSD) for cost aggregation
and the winner takes all (WTA) in the disparity selection step.

The pixel selection by thresholding is also present in the literature [68], which
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presents the area-based matching technique. The point-based matching within the
global framework is considered in experiments [70] by explicit modeling the mutual
relationships among neighboring points. In both of these approaches [68], [70], RGB
images were used; whereas, we use gray valued images.

6.2 Sparse Window Matching

6.2.1 Algorithm Framework

We have a pair of gray valued rectified stereo images I, and Ir with disparity range
D. We recover the disparity map which corresponds to the reference image I;,. In the
matching process, we observe the rectangular W, x W, W, = 2-w, + 1, windows and
select some pixels from the left and right matching windows as a suitable. The pixel
from the left matching window declared as suitable is selected for the cost aggregation
step only if the pixel at the same position from the right window is also declared as
suitable. From the N, selected pixels in each window, we form two NN, x 1 vectors z;
and z,. SSD normalized to the number of pixels IV, is used for the cost calculation.
Winner-Takes-All (WTA) method is applied to reliable disparity candidates. In the
postprocessing step, we use the common median filter.

6.2.2 Pixel Selection

The continuity constraint states that disparity varies smoothly everywhere, except on
the small fraction of the area on the boundaries of object where discontinuity occurs
[7]. Window based matching methods consider the approximation of the continuity
constraint and assume that all the pixels in the window have the same disparity. This
approximation is too rough in many cases, e.g. for inclined surface, thin objects,
round surfaces. We introduce less restrictive assumption and assume that the pixels
with close gray values have the same disparity i.e. we do not assume that all window
pixel have the identical disparity but only some. The pixels which are close to the
central window pixel in the color space should be used in the cost aggregation step.

We declare the pixel at the position (i,j), i,j = 1,.., W, in the left window as
suitable for matching if its gray value w;” differs from the central pixel’s gray value
= w}“ﬁl’w”ﬁl for less than the predefined threshold 7. The suitable pixels in
the right window are chosen in the similar manner. Pixel at the position (i, j), 4,j =
1,..,W, in the right window is declared as suitable for matching if its gray value w?’
differs from the central pixel’s gray value ¢, = w?=T1%=+1 for less than the predefined
threshold Tr. The vectors z; and z, are formed from the pixels at the position at
which pixels in both matching windows are declared as suitable. The pseudo-code of
the pixel selection step is given in Algorithm 6.

With the fixed window size W, and fixed thresholds 77, and Tr we expect the
low-textured windows to have a high number participating pixels (N, — W2) and
for rich-textured windows sometimes just a few pixels or even one. In these two
extreme cases we introduce additional steps in order to prevent errors. In the case



6.2. Sparse Window Matching 73

Algorithm 6 Pixel selection
N, =0
fori=1to W, do
for j =1 to W, do
if |wf’j —¢| < Ty, and |wi’ — ¢,| < T then
N,=N,+1
add wli’j to vector zj

add wfﬁj to vector z,
end if
end for
end for

of low textured window, we erode the selected pixel mask to prevent the pixels from
the neighboring textureless areas with the similar intensities influence the cost. In
the case of rich-textured windows with only several pixels selected for matching, we
perform dilation in order to prevent errors due to e.g. aliasing.

6.2.3 Cost Aggregation

We assume that the constant brightness assumption (CBA) is satisfied in the process
of matching. We expect the corresponding pixels to be very close in intensity values,
except for the Gaussian noise with the variance o2. This expectation is justified by
the outlier elimination in the process of pixel selection as explained in the previous
subsection 6.2.2. We choose the cost based on the sum of squared differences (SSD)
[21], [71]. In order to be able to compare the costs with different number of pixels
participating in the matching for the same central pixel, we introduce the SSD cost
normalized to the number of pixels N,:

2
1 7l — Z
Cnssp X ——- I =2 |7

N ro? (6.1)

The proposed cost eq.(8.8) is not invariant to unknown pixel offsets which can
cause erroneous matching result. We deal with unknown offsets by subtracting a
constant from vectors z; and z,, [72], by subtracting the central pixel values ¢; and
¢, from vectors z; and z,:

zZy = Zy—cCe (62)

Zy = Zp—Cp€

where e is all 1 column vector of the length V.
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6.2.4 Adjusted WTA and Postprocessing

The WTA method is used to select the optimal disparity d"¢ for the pixel at the
position (r,¢) in the left image. The WTA method takes into account the number of
pixels that support the decision by choosing among the trustworthy disparity candi-
dates. The trustworthy disparity candidates have at least Ny = K- max{NTf’C} pixels
participating in the cost aggregation, where N> is D x 1 vector with number of the
participating pixels in the cost aggregation for each possible disparity value. K, is
the ratio coefficient 0 < K, < 1. The optimal disparity d™¢ is found as:

d"¢ = argmin{C) s (d;)] Ny“(di) > N}, (6.4)
d;
where r = 1,...,R and ¢ = 1,...,C, for the image of the dimension R x C pixels.
The postprocessing step performs median L x L filtering on the disparity map d to
eliminate spurious disparities.

6.3 Experiment Results and Discussion

We have used the Middlebury stereo benchmark [4] to evaluate the performance of
the sparse window technique. The parameters of the algorithm are fixed for all four
stereo pairs: Ty = 10, Tg = 10, w, = 15, W, = 31, 02 = 0.5. In the process of pixel
selection, we declare the window as textureless if in more than w, + 1 columns and
in more than w, + 1 rows, more than half pixels from the left window are selected
for matching. The structuring element in erosion step is square Ng X Ng, Ngp = 5.
Dilation is performed with squared Np X Np, Np = 3 structuring element, if there
are less than N, columns with less than N,,;, pixels or if there are less than
Npin, rows with less than Ny, pixels, Npin, = 5. WTA parameter is K, = 0.5.
Postprocessing step is L x L median filtering with L = 5. These parameters have
been found empirically.

The disparity maps obtained by our algorithm (with offset compensation) for the
stereo pairs from the Middlebury database are shown in the third column in Figure
7.1. The leftmost column contains the left images of the four stereo pairs. Images
of the Tsukuba stereo pair in the first row are followed by Venus, Teddy and Cones.
Ground truth (GT) disparity maps are in the second column. The forth column
shows the bad disparity maps where the wrong disparities are shown in black. The
occlusion regions are gray and the white regions denote correctly calculated disparity
values. The quantitative results in the Middlebury stereo evaluation framework are
presented in Table 6.1 which shows the ranking of the results together with the error
percentages for the nonoccluded region (NONOCC), error for all pixels (ALL), and
the error percentage in the discontinuity region (DISC). We consider the ranking of
the NONOCC column most important because we do not deal with the occluded and
discontinuity regions in our algorithm although the results show that with our hybrid
technique edges of the objects are preserved. The disparities of some narrow structures
are successfully detected and recovered, although their dimensions are much smaller
than the size of the window. Example of the narrow objects are most noticeable in
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Tsukuba disparity map (the lamp reconstruction) and in Cones disparity map (pens
in a cup in the lower right corner). Whereas, the disparities of the large low textured
surfaces in stereo pairs Venus and Teddy are also successfully recovered with the same
sparse window technique.

The images in the Middlebury database have different sizes and disparity ranges,
as well as different radiometric properties. The stereo pairs Tsukuba (384 x288 pixels)
and Venus (434x383) have disparity ranges from 0 to 15 and from 0 to 19. The
radiometric properties of the images in these stereo pairs are almost identical, and
our algorithm gives even better results without the offset compensation given by eq.
(6.2). The error percentages for the nonoccluded regions for these two pairs without
the offset compensation are 2.53% and 0.62% respectively, see Figure 6.2. Figure
6.2 shows in the upper row the disparity maps calculated using the sparse window
technique without the offset compensation step for all four stereo pairs from the
evaluation framework and the lower row of figure 6.2 contains corresponding bad pixel
maps with color coding as in the previous figure. The stereo pairs Teddy (450x375
pixels) and Cones (450x375) have disparity ranges from 0 to 59. The images of these
stereo pairs are not radiometrically identical. The sparse window matching without
the offset compensation step results in very large errors, see Figure 6.2. The error
percentages for the nonoccluded regions for the stereo pairs Teddy and Cones without
the offset compensation are 17.5% and 13.8% respectively.

Table 6.1 Evaluation results based on the online Middlebury stereo bench-
mark [4]: The errors are given in percentages for the nonoccluded (NO) region,
the whole image (ALL) and discontinuity (DISC) areas. The numbers in the
brackets indicate the ranking in the Middleburry table on January 27th, 2011.

Images NONOCC ALL DISC

Tsukuba 2.82 (65) 4.68 (73) 11.7 (67)
Venus  1.20 (67) 2.87 (77) 12.4 (73)
Teddy — 9.16 (68) 18.4 (85) 22.1 (77)
Cones  5.91 (75) 16.2 (88) 15.0 (79)

6.4 Conclusion

We introduced a new sparse window technique for local stereo matching. The al-
gorithm is simple for implementation, as it is based on pixel selection by thresh-
olding, normalized sum of squared differences cost and plain median filtering in the
postprocessing step. Our algorithm does not suffer from the common pitfalls of the
window-based matching. It does not use color information as many other algorithms
and that may improve results in some cases. Yet, the sparse window local stereo
matching produces accurate smooth and discontinuity preserving disparity maps. Al-
though, the presented disparity maps are results of only one left to right matching
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and without parameter optimization, they score well in the comparison with other
algorithms, outperforming even some global algorithms and algorithms with much
more sophisticated segmentation and postprocessing techniques.

We demonstrated that the sparse window matching is promising technique. Our
algorithm can be further improved by introducing disparity map refinement and oc-
clusion treatment.



Sparse Window Stereo Matching with
Optimal Parameters !

We proposed a new local stereo matching algorithm for dense matching of gray images.
The algorithm is based on selection of a set of pixels from the matching windows which
participate in the cost calculation and represents a hybrid approach in between the
pixel based and the window based local stereo matching approach. The optimal choice
of the window size and the threshold value in sparse window matching is important
and depends on the stereo pair properties. We chose the optimal parameters for
different stereo pairs and demonstrate the algorithm performance on the test images
from the Middlebury stereo evaluation framework.

1S, Damjanovié, F. van der Heijden, and L. J. Spreeuwers, ” Sparse window stereo match-
ing”, Proceedings of the International Workshop on Computer Vision Applications, 2011
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7.1 Introduction

Stereo matching algorithms can be classified into two categories: local and global [4].
In local stereo matching, the cost is aggregated over a support window which is most
often rectangular. It is inherently assumed that all pixels within the matching window
have the same disparity. This is not true for e.g. curved surfaces due to perspective
distortion and occlusion. Also, the dimension of the objects whose disparity can be
successfully recovered depends on the window size: the object’s height and width in

Figure 7.1 Disparity results for the stereo pairs (1st row: Tsukuba, 2nd
row: Venus, 3rd row: Teddy, 4th row: Cones) from the Middlebury database
[6]. From left to the right columns show: The left image, Ground truth dis-
parity maps, Result computed by the sparse window matching technique with
postprocessing, Disparity errors larger than 1 pixel. The nonoccluded regions
errors with ranking (March 2011) are respectively: Tsukuba 1.88% (47), Venus
0.21% (20), Teddy 7.31% (44), Cones 4.96% (62)
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the image should be at least half the size of the window dimensions.

The ideal window for matching would be only one pixel. However, the one-pixel
window does not provide sufficiently discriminatory cost for the local stereo matching.
In order to combine the support of many pixels for cost aggregation as in the window-
based matching but not to be limited by the window dimension like in the pixel-based
matching, we introduce the hybrid support: a set of properly chosen pixels within the
rectangular window i.e. ”"sparse window” [73].

We improve the matching results from [73] by choosing the optimal parameters
in sparse window matching for different stereo pairs. Stereo pairs from the evaluation
framework [6] have different properties. The stereo pairs differ in sizes, disparity range
and level of details, see table 7.1. We improve the postprocessing step from [73] by
introducing the disparity consistency check and by filling in the missing disparities.

7.2 Sparse window matching

We consider a pair of gray valued, rectified stereo images Iy, and Ir with disparity
range D. We recover the disparity map which corresponds to the reference image Iy.
In the matching process, we observe the rectangular W x W, W = 2-w + 1, windows
and select some pixels from the left and right matching windows as a suitable for
matching if and only if the pixels lay within the fixed threshold 7" from the central
pixels. The pixel from the left matching window declared as suitable is selected for
the cost aggregation step only if the pixel at the same position from the right window
is also declared as suitable for matching. From the N, selected pixels in each window,
we form two IV, x 1 vectors. The sum of squared differences normalized to NN, is used
for the cost calculation. The adjusted Winner-Takes-All (WTA) method is applied to
trustworthy disparity candidates [73].

7.2.1 Parameter selection

We vary the values of the parameters: the window size w and the threshold 7. We
calculated the disparity error rate for different w and T and chose those which give
the smallest errors w.r.t. the ground truth disparity maps, Table 7.1.

7.2.2 Postprocessing

We calculate disparity maps corresponding to the both images of the stereo pair using
the optimal parameters. As the first postprocessing step, we apply 5 x 5 median filter
to the both disparity maps. Next, we perform consistency check with the tolerance
1 for the disparity map corresponding to the left image. The inconsistent disparities
are filled in by one of the four closest consistent neighbor disparities along vertical or
horizontal direction. We chose the disparity of the neighbor pixel with the smallest
intensity difference with the pixel with the inconsistent disparity. Finally, we apply
7 x 7 median filter to the final disparity map.
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Table 7.1 Stereo image properties and optimal parameters

’ Stereo pair H Size \ Disparity range ‘ wOPt ‘ TPt ‘
Tsukuba 384x288 0to 15 15 12
Venus 434x383 0 to 19 18 14
Teddy 450x375 0 to 59 12 16
Cones 450x375 0 to 59 15 12

Table 7.2 Error percentages with the Middlebury ranks [6] (March 2011)

’ Stereo pair H Nonoccluded \ Discontinuities ‘ All ‘
Tsukuba 1.88 (47) 3.10 (53) 8.96 (51)
Venus 0.21 (20) 0.71 (33) 2.84 (28)
Teddy 7.31 (44) 14.6 (61) 19.9 (64)
Cones 4.96 (62) 11.9 (62) 13.1 (69)

7.3 Results and Conclusion

Figure 7 shows the resulting disparity maps obtained by our algorithm for the stereo
pairs from the Middlebury database. The quantitative results within the Middlebury
stereo evaluation framework are presented in Table 7.2. For the stereo pairs Teddy and
Cones we applied the central point subtraction step to compensate for the radiometric
differences [72], [73].

The results show that with our hybrid technique edges of the objects are preserved.
The disparities of some narrow structures are successfully detected and recovered,
although their dimensions are much smaller than the size of the matching window.
Such example of the narrow objects are most noticeable in Tsukuba disparity map
(the lamp reconstruction) and in Cones disparity map (pens in a cup in the lower
right corner). On the other hand, the disparities of the large low textured surfaces
in stereo pairs Venus and Teddy are also successfully recovered with the same sparse
window technique.

In comparison to our previous result in [73], the parameter optimization and the
new postprocessing significantly reduced the error rates.



Local Stereo Matching Using Adaptive
Local Segmentation !

We propose a new dense local stereo matching framework for gray-level images based
on an adaptive local segmentation using a dynamic threshold. We define a new va-
lidity domain of the fronto-parallel assumption based on the local intensity variations
in the 4-neighborhood of the matching pixel. The preprocessing step smoothes low
textured areas and sharpens texture edges, whereas the postprocessing step detects
and recovers occluded and unreliable disparities. The algorithm achieves high stereo
reconstruction quality in regions with uniform intensities as well as in textured re-
gions. The algorithm is robust against local radiometrical differences; and successfully
recovers disparities around the objects edges, disparities of thin objects, and the dis-
parities of the occluded region. Moreover, our algorithm intrinsically prevents errors
caused by occlusion to propagate into nonoccluded regions. It has only a small num-
ber of parameters. The performance of our algorithm is evaluated on the Middlebury
test bed stereo images. It ranks highly on the evaluation list outperforming many
local and global stereo algorithms using color images. Among the local algorithms
relying on the fronto-parallel assumption, our algorithm is the best ranked algorithm.
We also demonstrate that our algorithm is working well on practical examples as for
disparity estimation of a tomato seedling and a 3D reconstruction of a face.

1S. Damjanovié, F. van der Heijden and L.J. Spreeuwers, ” Local Stereo Matching Using
Adaptive Local Segmentation”, ISRN Machine Vision, 2012
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8.1 Introduction

Stereo matching has been a popular topic in computer vision for more than three
decades, ever since one of the first papers appeared in 1979 [7]. Stereo images are
two images of the same scene taken from different viewpoints. Dense stereo matching
is a correspondence problem with the aim to find for each pixel in one image the
corresponding pixel in the other image. A map of all pixel displacements in an image
is a disparity map. To solve the stereo correspondence problem, it is common to
introduce constraints and assumptions, which regularize the stereo correspondence
problem.

The most common constraints and assumptions for stereo matching are the epipo-
lar constraint, the constant brightness or the Lambertian assumption, the uniqueness
constraint, the smoothness constraint, the visibility constraint and the ordering con-
straint, [3], [2], [4]. Stereo correspondence algorithms belong to one of two major
groups, local or global, depending on whether the constraints are applied to a small
local region or propagated throughout the whole image. Local stereo methods esti-
mate the correspondence using a local support region or a window [74] [75]. Local
algorithms generally rely on an approximation of the smoothness constraint assuming
that all pixels within the matching region have the same disparity. This approximation
of the smoothness constraint is known as the fronto-parallel assumption. However,
the fronto-parallel assumption is not valid for highly curved surfaces or around dis-
parity discontinuities. Global stereo methods consider stereo matching as a labeling
problem where the pixels of the reference image are nodes and the estimated dispar-
ities are labels. An energy functional embeds the matching assumptions by its data,
smoothness and occlusion terms and propagates them along the scan-line or through
the whole image. The labeling problem is solved by energy functional minimization,
using dynamic programming, graph cuts or belief propagation [21], [14], [22]. A recent
review of both local and global stereo vision algorithms can be found in [67].

Algorithms based on rectangular window matching give an accurate disparity es-
timation provided the majority of the window pixels belongs to the same, smooth
object surface with only a slight curvature or inclination relative to the image plain.
In all other cases, window-based matching produces an incorrect disparity map: the
discontinuities are smoothed and the disparities of the high-textured surfaces are prop-
agated into low-textured areas [44]. Another restriction of window-based matching is
the size of objects of which the disparity is to be determined. Whether the dispar-
ity of a narrow object can be correctly estimated depends mostly on the similarity
between the occluded background, visible background and object [34]. Algorithms
which use suitably shaped matching areas for cost aggregation result in a more ac-
curate disparity estimation, [73], [76], [66], [77], [68], and [75]. The matching region
is selected using pixels within certain fixed distances in RGB, CEILab color space
and/or Euclidean space.

To alleviate the fronto-parallel assumption, some approaches allow the matching
area to lie on the inclined plane, such as in [78] and [79]. The alternative to the
idea that properly shaped areas for cost aggregation can result in more accurate
matching results is to allocate different weights to pixels in the cost aggregation step.
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In [54] the pixels closer in the color space and spatially closer to the central pixel are
given proportionally more significance, whereas, in [69], the additional assumption of
connectivity plays a role during weight assignment.

Our stereo algorithm belongs to the group of local stereo algorithms. Within the
stereo framework, we rely on some standard and some modified matching constraints
and assumptions. We use the epipolar constraint to convert the stereo correspon-
dence into an one-dimensional problem. However, we modify the interpretation of
the fronto-parallel assumption and the Lambertian constraint. A novel interpretation
of the fronto parallel assumption is based on local intensity variations. By adap-
tive local segmentation in both matching windows, we constrain the fronto-parallel
assumption only to the intersection of the central matching segments of the initial
rectangular window. This mechanism prevents the propagation of the matching errors
caused by occlusion and enables an accurate disparity estimation for narrow objects.
The algorithm estimates correctly disparities of both textured as well as textureless
surfaces, disparities around depth discontinuities, disparities of the small as well as
large objects independently of the initial window size. We apply the Lambertian con-
straint to local intensity differences and not to the original gray values of the pixels
in the segment. In the postprocessing step, we apply the occlusion constraint with-
out imposing the ordering constraint, which enables successful disparity estimation
for narrow objects. Also, our stereo algorithm is suitable for a fast real-time imple-
mentation, because it is local algorithm for gray-valued images which uses a local
segmentation and only a small subset of window pixels for cost calculation.

Our main contribution is the introduction of the relationship between the fronto-
parallel assumption and the local intensity variation and its applications to the stereo
matching. In addition, we introduce a preprocessing step that smoothes low textured
areas and sharpens texture edges producing the image more favorable for a proper
local adaptive segmentation.

The paper is organized as follows: in Section 8.2, we explain our stereo matching
framework: the preprocessing step, the adaptive local segmentation, the matching
region selection, the stereo matching, and the postprocessing step; in Section 8.3, we
show and discuss the results of our algorithm on different stereo images; in Section
8.4 we draw conclusions.

8.2 Stereo Algorithm

Our algorithm consists of three steps: a preprocessing step, a matching step and a
postprocessing step. The flow chart of the algorithm is shown in Figure 8.1. Input
to the algorithm is a pair of rectified stereo images I; and I, where one of them,
for instance I, is considered as the reference image. For each pixel in the reference
image we perform matching along the epipolar line for each integer-valued disparity
within the disparity range. Firstly, the input images are preprocessed, as explained in
subsection 8.2.1. The preprocessing step is applied to each image individually. Next,
we calculate the local intensity variations maps for the preprocessed images and used
them to determine the dynamic threshold for adaptive local segmentation, elaborated
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in subsection 8.2.2. Further, the stereo matching comprises a final region selection
from segments, a matching cost calculation for all disparities from the disparity range
and disparity estimation by a modification of the winer-take-all estimation method,
see subsection 8.2.3. The result of the matching are two disparity maps, Dpr and
Dgy, corresponding to the left and right images of the stereo pair. Finally, postpro-
cessing step calculates the final disparity map corresponding to the reference image
as described in subsection 8.2.4.

left image right image

preprocessing

variation
look-up
table
dynamic
threshold

preprocessing

variation
table
dynamic
threshold

adaptive local
segmentation segmentation

left-right right-left
matching matching

postprocessing

adaptive local

final disparity map

Figure 8.1 Flow chart of the local stereo matching algorithm using adaptive
local segmentation

8.2.1 Preprocessing

We apply a nonlinear intensity transformation to the input images in order to make
them more suitable for adaptive local segmentation. The presence of the Gaussian
noise and the sampling errors in image can produce erroneous segments for matching.
The noise is dominant in the low textured and uniform regions, while the sampling
errors are pronounced in the high textured image regions. The sampling effects can be
tackled by choosing a cost measure insensitive to sampling as in [32], or by interpolat-
ing the cost function as in [80]. We handle these problems differently and within the
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Figure 8.2 Illustration of the preprocessing step for one image from Tsukuba
stereo pair: (a) Original image, (b) Detail of the original image, (c) Detail of
the original image after the preprocessing step is applied

preprocessing step. The applied transformation suppresses the noise in low textured
regions while simultaneously suppressing the sampling effects in the high textured
regions.

The transformation is based on the interpolated subpixel samples by bi-cubic
transform in the 4-neighborhood and by consistently replacing the central pixel value
by maximum or by minimum value of the set, depending on the relation between the
mean and the median of the set. We form a set of samples of the observed pixel at the
position (z,y), and the intensities in horizontally and vertically interpolates image at
the sub-pixel level at d;:

7 1
b= —gtig i€ {01, 14}, (8.1)
V= {I(‘,E_(Siay% I(.’E,y—(sl”Vl € {07 ]-v ) 14} } (82)

The intensity transformation is performed by replacing the intensity I(z,y) with
the new intensity as

_f max{v} : if median{v} > mean{v}
I(z,y) = { min{v} : otherwise (83)

All intensity values are corrected in the same manner. If the pixel intensity differs
significantly from its four neighbors, as in the high textured regions, it will be replaced
by the maximum value in the interpolated subpixel set v, resulting in the sharpening
effect. On the other hand, in low textured regions the intensity change is small and
replacing the initial intensity value systematically with the minimum value of the
interpolated subpixel set v, produces the favorable denoising effect. These positive
effects originate from the image resampling done by bi-cubic interpolation, because the
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bi-cubic interpolation exhibits overshoots at locations with large differences between
adjacent pixels, see chapter 4.4 in [81] and chapter 6.6 in [82]. These favorable effects
are lacking if the interpolation method is linear.

We illustrate the effect of the preprocessing step for an image from a stereo pair
from the Middlebury evaluation database in figure 8.2. Therefore, the preprocessing
step modifies regions with high intensity variations and results in the sharper image.
Further, in section 8.3, we show the influence of this step to overall algorithm score.

8.2.2 Adaptive Local Segmentation

Adaptive local segmentation establishes a new relationship between the local intensity
variation and the fronto-parallel assumption applied to stereo matching. Adaptive
local segmentation selects a central subset of pixels from a large rectangular window
for which we assume that the fronto parallel assumption holds for the segment. The
segment contains the central window pixel and pixels, spatially connected to the
central pixel, whose intensities lie within the dynamic threshold from the intensity of
the central window. Starting from the segment, we form a final region selection for
matching, see subsection 8.2.3.

The idea behind the adaptive local segmentation is to prevent that the match-
ing region contains the pixels with significantly different disparities prior to actually
estimating disparity. We accomplish this aim by conveniently choosing threshold for
segmentation based on the local texture. If local texture is uniform with local inten-
sity variations caused only by the Gaussian noise, we opt for a small threshold value.
In this way, because the intensity variations are small, the segment will comprise the
whole uniform region. We assume that these pixels originate from the smooth surface
of one object and therefore that the fronto-parallel assumption holds for the segment.
On the other hand, if the window is textured i.e. intensity variations are significantly
larger than the noise level, it is not possible to distinguish based only on the pixel in-
tensities and prior to matching, whether the pixels originate from one textured object
or from several different objects at different distances from the camera. In this case,
relying on the high texture for an accurate matching result, it is good to select small
segment in order to assure that the segment contain pixels from only one object and
does not contain depth discontinuity. Due to the high local intensity variations, this
is achieved by large threshold.

We introduce local intensity variation measure in order to determine the level of
local texture and subsequently the dynamic threshold. We define the local intensity
variation measure as a sharpness of local edges in the 4-neighborhood of the central
window pixel. The sharper local edges are, the larger the local intensity variation.
We calculate the local intensity variation using the maximum of the first derivatives
in the horizontal and the vertical directions at the half-pixel interpolated image by
benefiting again from overshooting effect of the bi-cubic interpolation.

The horizontal central difference for a pixel at the position (z,y) in image I is
calculated as

H=| 1= 3,5) ~ I+ 5.0) | (54)
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Figure 8.3 Left image from Tsukuba stereo pair with a color-coded local
intensity variations levels: the lowest local intensity variation is in red, and in
the ascending order follow orange, green, the highest local intensity variations
are in blue.

where I(z — 1,y) and I(z + 3,y) are horizontal half-pixel shifts of image I to the left
and to the right. The vertical central difference for a pixel at the position (z,y) in
image [ is calculated as

V=l Ty~ 5) Iy +5) | (55)

where I(z,y — 1) and I(z,y + 3) are vertical half-pixel shifts of image I. We define
the intensity variation measure as

Mi(x,y) = mazx(V, H). (8.6)

We divide local intensity variations into four ranges based on the preselected
constant T and define a dynamic threshold for each range by a look-up table :

g Newcny

2-T My(z,y) € [T, 0)

Figure 8.3 shows a color-coded dynamic threshold map, or equivalently local inten-
sity variation ranges, for the left image from Tsukuba stereo pair from the Middlebury
stereo evaluation set, [6].

The dynamic threshold Ty(x,y) defined by equation (8.7) for the reference pixel
in the reference image, is also used for the adaptive local segmentation in the non-
reference image for all potentially corresponding pixels from the disparity range.

The adaptive local segmentation pseudocode for the reference pixel I;(z,y) in the
left image is given by algorithm 7. The segmentation is performed for reference and
non-reference windows independently using the same threshold Ty(z,y). Thus, in the
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Algorithm 7 Adaptive local segmentation for reference pixel I;(z,y)

Step 1: Dynamic thresholding
for i =1to W do
for j=1to W do
if ]p;’/r —¢yp| < Ty(z,y) then
set B;/JT to 1
end if
end for
end for

Step 2: Dilation
Dilate B;/, with 3 x 3 squared structured element

Step 3: Imposing connectivity
fort=1to W do
for j =1to W do

if B;/]T = 1 and not connected to B;‘;jl’wﬂ then

set B;/Jr to 0
end if
end for

end for

W x W window, where W = 2 - w + 1, around the pixel at the position (z,y) in the
reference image, we declare that the pixel at (7,7) position, where 4,7 = 1,..,W in
the reference window, belongs to the segment if its gray value p;? differs from the
central pixel’s gray value ¢; = p}”H’wH for less than the dynamic threshold Ty(x,y).
The segment pixels in the non-reference window are chosen in similar way using the
same threshold Ty(z,y). Next, the central 8—connected components in the dilated
masks are selected. The final segments are defined by the binary W x W maps, B
and B,., with ones if the the pixels belong to the segment. Dilation is performed by
3 x 3 squared structured element to include additional neighbor pixels into segments
and to merge isolated but close selected pixels.

8.2.3 Stereo Correspondence

The matching region is defined by the overlap of the adaptive local segments in the
reference and non-reference windows. Thus, the matching region is defined by binary
map B, which has ones if and only if both binary maps, B; and B,, have ones at the
same positions, as given in algorithm 8.

We assume the corresponding pixels have similar intensities and that the differ-
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Algorithm 8 The final binary map calculation

fori=1to W do
for j=1to W do
if BjY A Bl then
set B to 1
end if
end for
end for

ences exist only due to the Gaussian noise with the variance 02. One-dimensional

vectors, z; and z,., are formed from the pixels from the left and right matching window
at positions of ones within the binary map B. Besides the noise, differences between
vectors can occur due to different offsets and due to occlusion. To make the matching
vectors insensitive to local different offsets, we subtract the central pixel values ¢; and
¢, from vectors z) and z,, given by algorithm 9. In this way, the intensity information
is transformed from the absolute intensities to the differences of intensities with re-
spect to the central window pixels. Further, we impose the Lambertian assumption on
the pixels after the central pixel subtraction and not on the original pixel intensities.
To prevent the occlusion influence in matching, we eliminate the occlusion outliers by
keeping only the coordinates of vectors which differ for less than threshold T as given
by algorithm 10.

Algorithm 9 Offset neutralization

Nz,> is the length of the vectors z; and z,
¢; and ¢, are the central intensities in the left and in the right window
for i = 1 to N, do

z)(i) =z (i) — ¢

z,(1) = z,(1) — ¢
end for

We calculate the matching cost using the sum of squared differences (SSD) [21],
[71]. To compare the costs with different length of vectors z; and z, for different
disparities, we introduce the normalized SSD:

1 |z —z |
Cnsgp(d) X Np 4.07% , (8.8)

where N, is the length of vectors z; and z, for disparity d.
The winner-take-all (WTA) method selects the disparity with the minimal cost

for the observed reference pixel. In our algorithm, besides the cost, the number of
pixels participating in the cost calculation is also an indication of a correspondence.
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Algorithm 10 Elimination of the outliers

N, is the length of the initial vectors z; and z,
k=0
for i =1to N, do

if |z;(i) — 2z,(¢)] > T then

Remove z;(i) and z,(7)

end if
end for
N, is the length of the final vectors z; and z,

This ordinal measure cannot be used directly in the disparity estimation, because it
is not always a reliable indication of the correspondence as in the case of occlusion.
If the number of pixels used in the cost calculation is very low, it may be due to
occlusion. However, a reliable match has a substantial ordinal support.

We combine the cost and the number of participating pixels in the disparity
estimation and introduce a hybrid WTA: we consider only disparities supported by
a sufficient number of pixels as potential candidates for a disparity estimate. Thus,
the final disparity estimate is chosen from a subset of the all possible disparities from
the disparity range. We term these disparity candidates as the reliable disparity
candidates [73], [83].

The reliable disparity candidates have at least N, = Kp~maX{NZf’y} supporting
pixels, where IV;*¥ is a set containing the number of pixels participating in the cost ag-
gregation step for each possible disparity value from the disparity range [Dyin, Dimaz)-
K, is the ratio coefficient 0 < K}, < 1. The estimated disparity d(z,y) is:

d(z,y) = arg min {Cridsp(di)| Ny¥(di) > Ns}, (8.9)
di€{Dmin,.--, Doz}

where z =1,...,Rand y =1,...,C, for image of the dimension R x C pixels and d;
belongs to the set of all possible disparities from the disparity range [Diin, Dimaz]-
The final result of the hybrid WTA is the disparity map D

D = {d(z,y)|Vx € [1, R] A Vy € [1,C]}. (8.10)
We calculate two disparity maps, one disparity map, Dy r, with the left image I;

as the reference, and the other, Dgy,, as the right image I, as the reference.

8.2.4 Postprocessing

In the postprocessing, we detect the disparity errors and correct them. There are
some areas of incorrect disparity values caused by low textured areas larger than the
initial window. There are some isolated disparity errors with significantly different
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disparity from the neighborhood disparities, so called outliers, caused by isolated pix-
els or groups of several pixels if the adaptive local segmentation did not result in
sufficiently large segment due to high local intensity variation. Also, there are dispar-
ity errors caused by occlusion. Although the matching procedure is the same for both
occluded and nonoccluded pixels, our stereo matching algorithm does not propagate
error caused by occlusions because the boundaries of objects are taken into account by
both the adaptive local segmentation and the final matching region selection. How-
ever, occluded pixels do not have corresponding pixels and the estimated disparities
for the occluded pixels are incorrect.

The post-processing consists of several steps including median filtering of the ini-
tial disparity maps, disparity refinement of the individual disparity maps, consistency
check and propagation of the reliable disparities.

First, we apply L x L median filter to both disparity maps, Dyr and Dgy, and
eliminate disparity outliers. Second, we refine the filtered disparity maps individually
to correct low textures areas with erroneous disparities, in an iterative procedure. The
refinement step propagates disparities by histogram voting to the regions with close
intensities defined by a look-up table given in equation (8.11) across the whole image as
illustrated in propagation scheme in figure 8.4. Some similar notions to this approach
appear separately in the literature, [75] and [28], and we were inspired by them. In
[28], the cost aggregation is done along the 16 radial directions in disparity space,
while in [75], histogram voting is used within the segment for disparity refinement.
We refine our disparity maps by histogram voting of accumulating disparities along
8 radial directions across the whole disparity map with constraint of the maximum
allowed intensity difference with the pixel being refined. The maximum intensity
difference is defined by a dynamic threshold 7}, with the same logic behind as in
local intensity variation measure in section 8.2.2, with the difference that here we
distinguish three ranges of intensity differences. Thus, the histogram is formed using
disparities of the pixels with close intensities along 8 radial directions, see figure 8.4
and table 8.1. The pixels are close in intensities and their disparities are taken into
account in histogram forming, if they lie within the threshold T, from the intensity
of the pixel at the observed position (z,y). The threshold T,(x,y) is selected based
on a look-up table:

Tywy) =0 % o May) e [L,5T) (8.11)

The histogram H with a number of bins equal to the number of disparities within
the disparity range, is formed by counting the disparities along 8 radial directions for
the pixels whose intensity is within threshold T, (z, y):

H(d(xtmp> ytmp)) = H(d((Eth, ytmp)) + 17 lf |I(xtmp7 ytmp) - I((E, y)‘ < Tp(xa y)7
(8.12)
where Tty and Yim,, are given by table 8.1.
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Figure 8.4 Propagation scheme

Table 8.1 x4y, and Y, values for histogram calculation in equation (8.12)

direction Timp Ytmp condition
1 up T—hy Y iw= {1 to z—1la—-1>0}
2 up-right T—lyr Y+iw fur={1 to min(z—-1,C —y)| min(z—-1,C—y) >0}
3 right x y+ir dp={1 to C—ylC—-y>0}
4 down-right z+44g Yy+is tor={1 to min(R-—2,C—y)| mn(R—z,C—y)>0}
5 down T+ig Y ig={1 to R—z|R—x>0}
6 down-left z+4iyg y—ia ta={1 to min(R—z,y—1) mn(R—-=z,y—1)>0}
7 left x y—i 4=4{1 to y—1y—-1>0}
8 up-left =ty Y—ty tw=1{1 to min(z—1,y—1) min(x—1,y—1)>0}
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We calculate disparity dj as a disparity of the normalized histogram maximum:

h(l) = g, = szn to Dmaa: (813)
> H(i)
dp, = arg rnaxh(i), t = Diin 10 Dinas (814)

The initial disparity d(z,y) is replaced by the new value dj, if it is significantly sup-
ported i.e. if the normalized histogram value h(dy) is greater than «, otherwise it is
left unchanged:

dp : ifldp, —d(z,y)| >1 A h(dy) >«
d(z,y) = { d(z,y) 0t|herwise( ! ) (8.15)
where o, 0 < « < 1, is a significance threshold. The steps given by equations (8.12),
(8.13), (8.14) and (8.15), are repeated iteratively until there are no more updates to

disparities in the map.
Next, we detect occluded disparities by the consistency check between two dispar-

ity maps:

|Dre(z,y — Drr(z,y)) — Der(z,y)| < 1. (8.16)

If the condition in (8.16) is not satisfied for disparity Drr(x,y), we declare it
as inconsistent and eliminate it from the disparity map. The missing disparities
are filled in by an iterative refinement procedure similar to the previously applied
procedure for the disparity propagation by histogram voting. In the iterative step
to fill in the inconsistent disparities, we use the threshold look-up table (8.11) as
in the disparity refinement step. We calculate the histogram h of the consistent
disparities with close intensities along 8 radial directions as given by (8.12) and (8.13).
The missing disparity is filled in with the disparity dj with the largest support in
the histogram, provided that the histogram is not empty. The remaining unfilled
inconsistent disparities, we fill in by the disparity of the nearest neighbor with known
disparities with the smallest intensity differences. As a last step in the postprocessing,
we apply L x L median filter to obtain the final disparity map.

8.3 Experiments and Discussion

We have used the Middlebury stereo benchmark [4] to evaluate the performance of
our stereo matching algorithm. The parameters of the algorithm are fixed for all four
stereo pairs as required by the benchmark. There are five free parameters in our
algorithm. The threshold value is set to T' = 12. The half-window size is w = 15,
and the window size is W x W where W = 31. The noise variance o2 is a small
and constant scaling factor in equation (8.8). The ratio coefficient in hybrid WTA is
K, = 0.5. In the post-processing step, the median filter parameter is L = 5 and the
significance threshold in histogram voting is a = 0.45.

Figure 8.5 shows results for all four stereo pairs from the Middlebury stereo evalu-

ation database: Tsukuba, Venus, Teddy and Cones. The leftmost column contains the
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left images of the four stereo pairs. The ground truth (GT) disparity maps are shown
in the second column, the estimated disparity maps are shown in the third column and
the error maps are shown in the forth column. In the error maps, the white regions
denote correctly calculated disparity values which do not differ for more than 1 from
the ground truth. If the estimated disparity differs for more than 1 from the ground
truth value, it is marked as an error. The errors are shown in black and gray, where
black represents the errors in the nonoccluded regions and gray represents errors in
the occluded regions. The quantitative results in the Middlebury stereo evaluation
framework are presented in Table 8.2.

The results show that our stereo algorithm preserves disparity edges. It estimates
successfully the disparities of thin objects, and successfully deals with subtle radio-
metrical differences between images of the same stereo pair. Occlusion errors are
not propagated and occluded disparities are successfully filled in the post-processing
step. A narrow object is best visible in the Tsukuba disparity map (the lamp con-
struction) and in Cones disparity map (pens in a cup in the lower right corner). Our
algorithm correctly estimates disparities of both textureless and textured surfaces e.g.
the example of large uniform surfaces in stereo pairs Venus and Teddy are successfully
recovered.

The images in the Middlebury database have different sizes, different disparity
ranges, and different radiometric properties. The stereo pairs Tsukuba, 384 %288
pixels, and Venus, 434x383 pixels, have disparity ranges from 0 to 15 and from 0
to 19. The radiometric properties of the images in these stereo pairs are almost
identical, and the offset compensation given by algorithm 9 is not significant for
these two example pairs, as we demonstrated in [73]. As required by the Middlebury
evaluation framework, we apply the offset compensation to all four stereo pairs. The
stereo pairs Teddy, 450 x 375 pixels, and Cones, 450 x 375 pixels, have disparity ranges
from 0 to 59. The images of these stereo pairs are not radiometrically identical and
the offset compensation successfully deals with these radiometrical differences [73].

Table 8.2 Evaluation results based on the online Middlebury stereo bench-
mark [4]: The errors are given in percentages for the nonoccluded (NONOCC)
region, the whole image (ALL) and discontinuity (DISC) areas. The numbers
within brackets indicate the ranking in the Middlebury table.

Images NONOCC ALL DISC

Tsukuba 1.33 (37) 1.82(32) 7.19 (46)
Venus  0.32 (39) 0.79 (46) 4.5 (58)
Teddy — 5.32 (17) 119 (40) 14.5 (19)
Cones  2.73 (14) 9.69 (53) 7.91 (21)

The error percentages together with ranking in the Middlebery evaluation online
list are given in Table 8.2. The numbers show error percentages for non-occluded re-
gions (NONOCC), discontinuity regions (DISC) and the whole (ALL) disparity map.
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Figure 8.5 Disparity results for the stereo pairs (1st row: Tsukuba, 2nd
row: Venus, 3rd row: Teddy, 4th row: Cones) from the Middlebury testbed
database. The columns show, from left to the right : The left image, Ground
truth, Result computed by our stereo algorithm, Disparity error map larger
than 1 pixel. The nonoccluded regions errors with ranking are respectively:
Tsukuba 1.33% (37), Venus 0.32% (39), Teddy 5.32% (17), Cones 2.73% (14)
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The overall ranking of our algorithm in the Middlebery evaluation table of stereo al-
gorithms is the 28" place out of 123 evaluated algorithms. Thus, our stereo algorithm
outperforms many local as well as global algorithms. Among the algorithms ranked in
the Middlebury stereo evaluation, there are only two local algorithms ranked higher
than our algorithm but both of them do not impose the fronto-parallel assumption
strictly: a local matching method using image geodesic supported weights GeoSup
[74], and a matching approach with slanted support windows PatchMatch [84]. Both
of these algorithms use colored images, while our algorithm works with intensity im-
ages and achieves comparable results. Although these approaches have better general
ranking in the Middlebury stereo evaluation list, our approach with matching based
on fronto-parallel regions outperforms the PatchMatch algorithm for Tsukuba stereo
pair, and the GeoSup algorithm for Tsukuba, Teddy and Cones stereo pairs. Thus,
our approach with region selection by threshold produces more accurate disparity
maps for cluttered scenes than GeoSup algorithm with region selection using geodesic
support weights.

To investigate the contribution of the preprocessing and the postprocessing steps
to the overall result, we show in table 8.3 the results we obtained on the benchmark
stereo pairs with or without the preprocessing and the postprocessing steps in the
algorithm. We show the results if neither, only one, and both steps are applied. If
our postprocessing step was omitted, the L x L median filter was applied. From
the results in table 8.3, we conclude that both steps, if individually applied, improve
the qualities of the final disparity maps. If we apply both steps, the accuracy of
the disparity maps is the highest. Furthermore, the improvement contribution of
the preprocessing step is greater than the postprocessing step only for Venus stereo
pair. This is because the sampling effects were most pronounced in Venus scene. In
addition, we show in figure 8.6 the disparity maps for Tsukuba stereo pair for all four
combinations: if the preprocessing and the postprocessing steps are included or not
in the algorithm. We conclude that the preprocessing step plays a significant role
in accurate disparity estimation of textureless areas, while the postprocessing step
especially helps in an accurate estimation of disparity discontinuities.

To illustrate the subtle features of our algorithm not captured in the standard test
bed images, we apply our stereo algorithm, while retaining the parameter values, on
some other images from the Middlebury site in Figure 8.7. For two other stereo pairs,
Art and Dolls, we show the left images of two stereo pairs in the leftmost column.
The ground truth (GT) disparity maps are in the second column. The third column
shows our estimation of the disparity maps. The fourth column shows the error maps
with regard to the ground truth. The algorithm successfully recovers the disparities
of very narrow structures as in Art disparity map. The disparity of the cluttered
scene is successfully estimated, as in Dolls disparity map.

Next, we demonstrate that the presented local stereo algorithm works well on
practical problems. Examples of disparity map estimation and 3D reconstruction of
a face are shown for stereo pair Sanja in figure 8.8. The disparity map estimation
of a plant in stereo pair Tomato seedling is shown in figure 8.9. The parameters of
the algorithm are kept the same as in the previous examples. Thus, our algorithm
successfully estimates the disparity of the smooth low textured objects and is suitable



8.3. Experiments and Discussion 97

Tsukuba [ Venus [ Teddy [ Cones
‘ preP ‘ postP ‘ nonocc  all disc ‘ nonocc  all disc ‘ nonocc all disc ‘ nonocc all disc ‘
3.6 5.41 10.04 2.76 4.38 13.18 8.11 17.42  19.73 4.77 15.04 12.33
2.74 450 10.11 0.62 1.63 7.95 7.52 16.82  19.41 3.98 14.37  11.27
2.45 3.05 7.31 1.53 2.11  5.75 6.11 12.49 15.20 3.20 9.30  9.14
1.33 1.82  7.19 0.32 079 45 5.32 11.90 14.50 2.73 9.69  7.91

H 4]
[

Table 8.3 Comparison of results with (4) or without(-) preprocessing (preP)
and postprocessing (postP) steps

Figure 8.6 Disparity results for the stereo pair Tsukuba: (a) without pre-
processing and without postprocessing, (b) without preprocessing and with
postprocessing, (¢) with preprocessing and without postprocessing, (d) with
preprocessing and with postprocessing

also for application to 3D face reconstruction, figure 8.8(d). Our algorithm also
successfully estimated the disparity map of the tomato seedling. Tomato seedling
stereo images represent a challenging task for a stereo matching algorithm in general,
because the viewpoints significantly differ and the structure of the plant is narrow i.e.
much smaller than the window dimension.

As far as the initial window size is concerned, our algorithm is not influenced by
the window size above certain size. In principle, we could apply our algorithm using
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Figure 8.7 Disparity results for the stereo pairs (1st row: Art, 2nd row:
Dolls) from the Middlebury database of the stereo images. Size of each image
is 370 x 463 pixels. Disparity range in both stereo pair is 0 to 75. The
columns show, from left to the right: The left image, The ground truth, The
result computed by our stereo algorithm, The disparity error map larger than
1 pixel.

the whole image as the initial window around the reference pixel. This would result
in a sufficiently large region selection for uniform regions in the image and make the
the ordinal measure within the hybrid WTA more reliable. On the other hand, in
matching windows with high local intensity variations, the selected region is always
significantly smaller than the window and does not change if the window is enlarged
because of the connectivity constraint with the reference central pixel.

8.4 Conclusion

In our local stereo algorithm, we have introduced a new approach for stereo corre-
spondence based on the adaptive local segmentation by a dynamic threshold so that
the fronto-parallel assumption holds for a segment. Further, we have established a
relationship among the local intensity variation in an image and the dynamic thresh-
old. We have applied the novel preprocessing procedure on both stereo images to
eliminate the influence of noise and sampling artifacts. The mechanism for the final
matching region selection prevents error propagation due to disparity discontinuities
and occlusion. In the postprocessing step, we introduce a new histogram voting proce-
dure for disparity refinement and for filling in the eliminated inconsistent disparities.
Although, the starting point in matching is the large rectangular window, disparity
of narrow structures is accurately estimated.

We evaluated our algorithm on the stereo pairs from the Middlebury database.
It ranks highly on the list, outperforming many local and global algorithms that use
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Figure 8.8 Disparity results for the stereo pair Sanja, taken at the vision
laboratory of Signals and Systems Group, University of Twente. Size of each
image is 781 x 641 pixels. Disparity range is 0 to 40. (a) Left stereo image
(b) Right stereo image (c) Disparity map corresponding to the right image (d)
Depth map with texture overlay
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(©)

Figure 8.9 Disparity results for the stereo pair Tomato seedling, taken
within MARVIN project at the vision laboratory of Intelligent System Group,
Wageningen UR - Food and Biobased Research. Size of the region of inter-
est in each image is 300 x 310 pixels. Disparity range is 0 to 90. (a) Left
stereo image (b) Right stereo image (c) Region of interest in the left image
(d) Disparity map corresponding to the left image
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color information while we use only intensity images. Our algorithm is the best per-
forming algorithm in the class of local algorithms which use intensity images and the
fronto-parallel assumption without weighting the intensities of the matching region.
Furthermore, our algorithm matches textureless as well as textured surfaces equally
well, handles well the local radiometric differences, preserves edges in disparity maps,
and successfully recovers the disparity of thin objects and the disparities of the oc-
cluded regions. We demonstrated the performance of our algorithm on two additional
examples from the Middlebury database and on two practical examples. The results
on this additional examples show that the disparity maps of scenes of different natures
are successfully estimated: smooth low textured objects as well as textured cluttered
scenes, narrow structures and textureless surfaces. Moreover, our algorithm has also
other positive aspects making it suitable for real time implementation: it is local; it
has just five parameters; intensity variations are locally calculated and there is no
global segmentation algorithm involved.
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Conclusion and Recommendations

The aim of our research was to investigate a stereo correspondence problem. We
tackled the problem from the aspect of similarity measure. In this chapter and at
the end of our pursuit of ideal similarity measure, we draw conclusions by answering
the research questions posed in Chapter 1, Section 1.4, and give future directions for
stereo matching research.

103
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9.1 Conclusions

The purpose of this research was to investigate stereo matching. Stereo matching is
a difficult problem because of the existence of occlusion, and because of the unknown
gains, offsets and texture. In this research study, we focused on stereo matching using
probabilistic global algorithms and later local algorithms, tackling a non-regularity of
a problem from different aspects and answering the following questions:

How can we design a method for disparity estimation that is optimal in a
probabilistic sense?

We defined the probabilistic framework for stereo matching using one-dimensional
hidden Markov models. The state variable is disparity and the number of the states
is equal to the disparity range of the scene. The state transition probabilities corre-
spond to the scene characteristics and we chose it according to the expected disparity
change along the epipolar line. As the observation probabilities are not known, they
are expressed using the likelihood function. In Chapters 3 and 4, we investigated the
optimal parameters and probabilistic algorithms for disparity estimation.

How can we define a disparity estimation as a one-dimensional state esti-
mation problem?

We defined a stereo matching problem as a one-dimensional state estimation prob-
lem for the rectified pair of stereo images, by assuming that the scene statistics is
described by the first order hidden Markov model. The stereo matching is treated as
the state estimation problem where the state variable is the disparity. Evolution of
the state variable then happens along the epipolar line, and the transition probabil-
ities allow for continuous and abrupt transitions, i.e. changes of disparity along the
epipolar line. The likelihood was derived using the normalized crosscorrelation.

Which probabilistic algorithms can be used to estimate disparity map from
stereo images using one-dimensional hidden Markov model?

If the disparity map estimation is observed as a one-dimensional space-state es-
timation problem using one-dimensional hidden Markov models, a number of well
known algorithms can be applied. The algorithms used for state estimation using
hidden Markov models are: forward algorithm, forward-backward algorithm, Viterbi
algorithm, dynamic programming, particle filter and particle filter followed by smooth-
ing. We demonstrated the application of these algorithms for disparity estimation.

How can particle filter be applied to estimate disparity?

We defined the stereo matching as a state estimation problem and applied par-
ticle filter for stereo reconstruction. Within our probabilistic framework for stereo
reconstruction, we applied a particle filter and particle filter followed by smoothing
to disparity estimation. In Chapter 3, we demonstrated that a particle filter is a suit-
able for disparity estimation. The advantage of particle filter over other approaches
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is its flexibility and ease to include more complex knowledge of the scene into the
probabilistic model.

How do the different state estimation algorithms compare for different
state space parameters?

In Chapter 4, we compared different probabilistic algorithms, for different param-
eters of the one-dimensional hidden Markov model for the fixed likelihood function.
The algorithms compared showed expected behavior: online algorithms have similar
behavior, and success rate in disparity estimation. There are several main factors that
contribute to the success rate of the algorithm in an accurate disparity estimation,
those being model parameters as well as the likelihood function. We investigated the
influence of the state model parameters and concluded that it is necessary to have a
more reliable likelihood function. As a possible improvement, we investigated a more
suitable likelihood measure.

How can we define a likelihood measure that is optimal in a probabilis-
tic sense?
Optimal likelihood function for stereo matching, in a probabilistic sense, is invariant
to unknown texture, gains, and offsets. In Chapter 5, we derived a new likelihood
function starting from the acquisition model of the point in an image.

How can we derive a likelihood measure which is invariant to unknown
texture, gains, and offsets?

We introduced a new likelihood function for window-based stereo matching, based
on a probabilistic model that can cope with unknown textures, uncertain gain fac-
tors, uncertain offsets, and correlated noise. We derived the likelihood function by
modeling the uncertainties of the unknown texture mapping of the surface to the two
image planes including the unknown gain, offset and noise, and then marginalizing the
expression for the whole range of values. This resulted in the formula for likelihood
which takes into account degrees of uncertainties and contributes to the more accu-
rate matching results in comparison to using likelihood based on the sum of squared
differences. We also showed that the sum of squared differences is an asymptotical
case of our new likelihood formula.

How can we define an optimal region for matching?

An optimal matching region is comprised of pixels which belong to the projection of
the smooth scene surface to an image and does not contain any disparity disconti-
nuities. Without knowledge about scene geometry previous to matching, it is a very
challenging task. In Chapters 6, 7 and 8, we approached this problem in a novel way
by establishing a relationship between local texture and disparity.
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How can we suitably select a sparse subset of pixels for matching from
the initial matching windows with the aim of diminishing the influence of
the occlusion and the depth discontinuity to the matching and how can
we calculate a matching cost?

The suitable likelihood measure which takes into account uncertainties of texture,
gain, offsets and noise can not deal in a straightforward way with occlusion. There
were limitations of the window-based matching to deal with. For these reasons, we
diverged from using the whole squared windows for similarity/cost calculation and
looked into the mechanism of proper pixel selection for matching within the local
stereo matching framework. In Chapter 6 we investigated sparse window matching.
Thus we used only a subset of window pixels selected by a threshold with respect
to the central pixel and showed that the results improve in comparison with using
the whole windows for likelihood calculation. As the number of selected pixels for
matching plays a role, it was necessary to normalize a matching cost to the number
of participating pixels in cost calculation: so we introduced a hybrid winner-take-all
(WTA) algorithm. Also, the most suitable threshold for pixel selection depends on
the scene characteristics, as shown in Chapter 7. We showed that by choosing a suit-
able threshold the accuracy of the estimated disparity maps improves.

How can we establish a relationship between the fronto-parallel assump-
tion and the local intensity variation for application in stereo matching?
How do we select a segment for matching so that the fronto-parallel as-
sumption holds for the segment?

The main assumption in window-based stereo matching is the fronto-parallel as-
sumption, which states that disparities within the matching window vary slightly.
Most errors in window-based stereo matching occur when the window contains dept
discontinuity. The presence of the depth discontinuity within the window makes the
pivoting fronto-parallel assumption of stereo matching invalid. It would be ideal if we
knew beforehand if there is a discontinuity within the window, but it is not possible
to learn without performing matching. We came up with the idea observing the prob-
lem differently, namely, from the aspect of local texture using local intensity variation.
We established a relationship between the fronto-parallel assumption and the local
intensity variation. We defined local intensity variation as the maximum difference
between the pixel and its four neighbors. In addition, we performed adaptive local
segmentation by thresholding, where the threshold is directly proportional to the local
intensity variation. This may seem counter intuitive, but a small threshold will select
the whole uniform region, while in a highly textured region the highest threshold value
is necessary. Thus, the region for which the fronto-parallel assumption holds can be
selected as a central window region using a suitably selected threshold for adaptive
local segmentation.

What kind of intensity transformation on the image pixels makes the im-
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age more favourable for local adaptive segmentation?

In adaptive local segmentation we performed segmentation by several fixed thresh-
olds. In thresholding, the influence of image imperfections of the acquisition process
such as noise and sampling effects can significantly influence the outcome of the seg-
mentation. We invented a new intensity transformation which has favorable effects
for adaptive local segmentation. A new intensity transformation has a smoothing
effect and suppresses noise in low-textured image areas, while in high-textured areas
it has a sharpening effect and suppresses sampling effects.

Which postprocessing steps deal successfully with inconsistently estimated
disparities?

Postprocessing step detects and fills in the inconsistent disparities. We introduced a
postprocessing step that fills in the inconsistent disparities using the local intensity
variation and histogram voting. We observed the surrounding pixels along eight radial
directions in the whole image around the inconsistent disparity and filled its disparity
in as a disparity with a maximum histogram disparity. We took into account only
pixels close in intensity. The idea behind this approach was also that it is expected
that pixels close in intensity also have a close disparities.

9.2 Recommendations and Future Directions

In Chapter 7, we showed the importance of proper parameter selection for different
stereo pairs. The optimal algorithm parameters depend on the scene characteristics
in the stereo images. However, in Chapter 8 we kept the parameters fixed as required
by the Middlebury evaluation framework for all four stereo pairs from the benchmark.
It would be relevant to find out what the optimal parameters of the stereo match-
ing algorithms for different stereo pairs would be and how much the disparity map
estimation accuracy could be improved.

In Chapter 8, the starting point in adaptive local segmentation was a squared
window. Generally, there is no need to use a rectangular window instead the whole
image can be used as a starting point for segmentation. This would imply that the
starting window size is unlimited or limited only by image size. Thus, a whole image
can be used as a starting window, and a segment for matching could be selected by
adaptive local segmentation.

In addition, we can investigate the effect of our interpretation of a relationship
between a fronto-parallel assumption and the local intensity variation for large slanted
surfaces. The question arises whether it is necessary to limit the size of the initial
window for slanted surfaces. For instance, we could consider whether a textureless
surface is slanted and then limit a window width in that case.

The intensity transformation that we used in a preprocessing step for adaptive
local segmentation based matching could be analysed and quantified further. An
interesting question is what the influence of the median and mean relationship for the
transformation is.
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For future consideration, it would be interesting to analyse the speed of the algo-
rithm when implemented for real time implementation, for examplr in programming
language C.

The next question is whether we could extend the stereo matching to matching
three views, and which contribution would be expected? How should occlusion treated
in such a multiview case?
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Summary

The aim of stereo matching is to find a corresponding point for each pixel in a reference
image of a stereo image pair in the other image. Corresponding points are projections
onto the stereo images of the same scene point. Finding corresponding points is an
essential problem in dense stereo matching. The relative displacement between the
corresponding points in rectified stereo images is termed disparity. Stereo matching is
ambiguous because of photometric issues, surface structure and geometric ambiguities.
For highly reflective or specular surfaces, the appearance in different images may differ
significantly. Also, finding corresponding points within uniformly colored regions or
surfaces with repeating texture or structure is a huge problem. Some points do not
have corresponding points due to occlusion or due to the limited field of view.

After presenting a literature overview on stereo correspondence, we began our
journey into stereo matching by defining a probabilistic framework. We defined
disparity estimation as a state estimation problem using a one-dimensional hidden
Markov model with a number of states equal to the number of disparities in the dis-
parity range. We showed that the particle filter and the particle filter followed by
smoothing can be used in disparity estimation. We introduced and qualitatively com-
pared five probabilistic algorithms for disparity estimation: the forward algorithm,
the forward/backward algorithm, the Viterbi algorithm, the particle filter and the
particle filter in combination with smoothing.

We derived a new likelihood function for correspondence that is optimal in a
probabilistic sense for stereo matching and invariant for unknown texture, gains and
offsets.

We deviated from the squared window based likelihood in order to include only
relevant pixels in the likelihood function. We introduced local stereo matching us-
ing sparse windows. This approach gave us a significant improvement compared to
matching based on the complete windows. Optimal parameters for sparse matching
depend on the nature of the scene. Whether the scene is characterised by highly tex-
tured or low textured surfaces influences the parameter choice for accurate disparity
estimation. We considered the most suitable parameters for sparse stereo matching.

Further led by the idea that a different nature of texture requires a different ap-
proach to likelihood estimation, we redefined several of the most common assumptions
and established a relationship between the texture and the fronto-parallel assumption
and introduced local adaptive segmentation based on the local intensity variation. We
redefined the Lambertian assumption for offset compensation and introduced novel
preprocessing and postprocessing steps for accurate disparity map estimation.
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Samenvatting

Het doel van stereomatching is een corresponderend punt te vinden voor elk pixel in
het referentie beeld van een stereo paar in het andere beeld. Corresponderende punten
zijn projecties van hetzelfde punt in een scene op de stereobeelden. Het vinden van
corresponderende punten is een belangrijk probleem in stereomatching. De relatieve
verschuiving tussen de corresponderende punten in gerectificeerde stereobeelden wordt
dispariteit benoemd. Stereomatching is geen eenduidig oplosbaar probleem door
verschillen in fotometrische eigenschappen van stereocamera’s, de aanwezigheid van
oppervlaktestructuren van afgebeelde objecten en geometrische verschillen in stere-
obeelden. Sterk reflecterende of spiegelende oppervlakken worden verschillend afge-
beeld in stereobeelden. Ook, het vinden van corresponderende punten op egale delen
in de beelden of oppervlakken met een herhalende structuur maken de stereocorre-
spondentie een lastig probleem. Sommige punten hebben zelfs geen corresponderende
punten door occlusie of door een beperkte kijkhoek.

Na de presentatie van een literatuuroverzicht van stereo correspondentie, be-
gonnen we onze expeditie naar stereomatching met de definitie van een probabilis-
tisch raamwerk. We definieerden de schatting van de dispariteit als een toestandss-
chattingsprobleem met behulp van een 1-dimensionaal hidden Markov model waarvan
het aantal toestanden gelijk is aan het aantal verschillende dispariteiten in het dis-
pariteitsbereik. We lieten zien dat het partikelfilter en het partikelfilter met smoother
voor schatting van dispariteit kunnen worden gebruikt. We introduceerden, kwan-
tificeerden en vergeleken vijf probabilistische algoritmen voor dispariteitsschatting:
het forward-algoritme, het forward/backward-algoritme, het Viterbi-algoritme, het
partikelfilter en partikelfilter in combinatie met smoothing.

We introduceerden een nieuwe likelihoodfunctie voor correspondentie die opti-
maal is in probabilistische zin voor stereo matching en ook invariant voor onbekende
textuur, gains en offsets.

We weken af van de standaard op vierkante windows gebaseerde likelihood, door
alleen de belangrijke pixels in de likelihoodfunctie mee te tellen d.w.z. we introduceer-
den lokale stereomatching met sparse windows. Deze aanpak gaf een substantiéle
verbetering in vergelijking met de matching die op gehele windows gebaseerd is. De
optimale parameters voor sparse matching zijn sterk afhankelijk van de soort van de
scene. Met name bij de aanwezigheid van sterke texturen of juist de afwezigheid van
textuur, heeft de keuze van de parameters een grote invloed op de nauwkeurigheid
van de schatting van de dispariteit. We onderzochten de best geschikte parameters
voor sparse stereomatching.

Voortbordurend op het idee, dat verschillende soorten textuur een verschillende
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aanpak voor de bepaling van de likelihood nodig hebben, hebben we een aantal van
de meestvoorkomende aannamen geherdefinieerd en we stelden een relatie tussen de
textuur en de fronto-parallel aanname vast. Ook introduceerden we een methode
voor lokale adaptieve segmentatie, gebaseerd op de lokale variatie van de intensiteit.
We hebben de Lambertiaanse aanname geherdefineerd voor offset compensatie en
introduceerden nieuwe methoden voor preprocessing en postprocessing voor accurate
schatting van de dispariteit.
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